

Mixed Signal Integration

A corporate commitment to continued research and development has allowed MSI to innovate in the areas of lowpower and low-noise analog signal processing, low distortion audio, high frequency filtering and low voltage operation. The company leverages its strong technology and system expertise to define and develop IC solutions for customers worldwide.

MSI provide direct and channel sales support as well as outstanding technical applications assistance to their customers worldwide. MSI has established partnerships with select foundry and assembly/test vendors to offer its customers a broad choice of processes and packages to meet their stringent requirements.

Technology Expertise

oadband

2000

echnology

- Switched Capacitor, Continuous Time and Comb Filters
- Low Power, Low Noise Analog Signal Processing
- Phase Locked Loops
- Limiters and Companders
- **Op Amps and Comparators**
- Automatic Gain Controls and Low-Noise Amplifiers
- Voltage Controlled Oscillators and Mixers
- Voltage Regulators and references
- Analog Front Ends
- Data Converters –ADCs and DACs
- Serial Port Interfaces

System Expertise

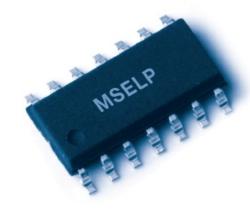
- Sensor Interfaces
- Security Systems
- Medical Diagnostic Equipment
- **Communications Systems**
- Audio, Video and Telecom Filtering
- Automatic Test Equipment
- **Radio Receivers**
- **Cellular Phones**
- Sonars and Sonobuoys
- Audio and Sound Enhancement Systems
- RF and Mechanical Energy Harvesting

Standard Product Categories

- High Performance General Purpose IC Filters
- Communications and Specialty ICs
- Audio/Video ICs

Custom Product Categories

- Highly Integrated Turn-Key ASIC Solutions
- From Product Definition to Product Shipment
- **Optimized for Performance and Cost** Efficiency



∃M?iE

2000 Market and Application

Communications/Specialty ICs

- Homeland Security
- Radio Receivers
- Optical Amplifier Line Cards
- Distortion Meters
- Land Mobile Radios
- Power Line Modems
- Cable Testers
- Sonars & Sonobuoys
- Wireless Systems

Communications/Specialty ICs

Industrial

- Sensor Signal Conditioning
- Security Monitoring
- Medical Diagnostics
- Energy Harvesting
- Automatic Test Equipment
- Instrumentation
- Solar Panel Charging
- Sound Pressure Meters

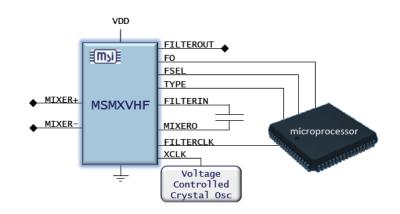
Audio/Video

- Graphic Equalizer Displays on Stereos and TVs
- Light Displays and Decorations
- LED Cubes
- Sound Enhancement
- Hearing Aids
- Audio Filtering
- Video Filtering

High Performance General Purpose IC filters

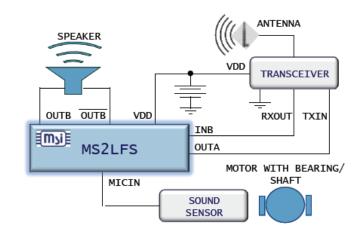
∃M?i

Name	Filter Type and Description	Features	Benefits and Comments
MSELP"	Switched Capacitor Elliptic Lowpass Filter	Low power; 2 uncommitted op amps Internal or external clock	No ext. components; low current <1mA. Built-in oscillator eliminates need for ext. Clock
MSEPAF	Electrically Programmable Active Filter	Up to 18MHz filtering On-chip E2PROM	No need for external sampling clock. 16-pin bench programmable
MSFS1-6" MSHFS1-6"	Selectable Switched Capacitor Lowpass/Bandpass Filter (FS: Audio Freq., HFS: High Freg.)	7 or 6-pole lowpass & 6-pole bandpass Adjustable gain 0, 10 or 20 dB	FS: Up to 40kHz, HFS: Up to 2.5MHz. No ext. components; small 8-pin package version
MSHN1-6"	Selectable Switched Capacitor Highpass/Notch Filter 8 or 7-pole highpass & notch	8 or 7-pole highpass & notch Adjustable gain 0, 6 or 12 dB	2.7 min. operating voltage and low power <1mW. No ext. components; small 8-pin package version
MSLE5L/M" MSLB5L/M"	Switched Capacitor General Purpose Lowpass Filter (E: Elliptic, B: Butterworth; L:5kHz max., M:20KHz max.)	5-pole lowpass. Internal or external clock	2.7 min. operating voltage and low power <1mW. No ext. components; small 8-pin package version
MSLFS MS2LFS*	Selectable Switched Capacitor Low Voltage Lowpass/Bandpass Filter (LFS: Single, 2LFS: Dual)	Operating voltage down to 1V. Adjustable gain 0, 6 or 12 dB	1V min. operating voltage and low power "0.5mW. Ideal for portable applications; no ext. Components
MSNBLP*	Switched Capacitor Butterworth Lowpass Filter	2 uncommitted op amps. Internal or external clock	No ext. components; low current <1mA. Built-in oscillator eliminates need for ext. Clock
MSRAAF MSRAHR	Resistor Programmable Active Audio Filter (RAAF:20kHz max., RAAHF:1MHz max.)	Adjust Q, freq. and gain independently. Low sensitivity to ext. resistor variation	Configurable for either a lowpass, bandpass, highpass, allpass or notch filter; no clock needed
MSU1F1-4" MSU2F1"	Resistor Programmable Universal Active Filter (40kHz max.)	Wide Q range 0.5 to over 200. Adjustable gain	Configurable for either a lowpass, highpass, elliptic, allpass or notch filter
MSU1HF1-4 MSU2HF1"	High Frequency Resistor Programmable Universal Active Filter (500kHz max.)	Wide Q range 0.5 to over 20. Adjustable gain	Configurable for either a lowpass, highpass, elliptic, allpass or notch filter
MSVHFS1-6"	Selectable Very High Frequency Lowpass/Bandpass Filter	6-pole lowpass & 6-pole bandpass. Adjustable gain 0, 10 or 20 dB	Up to 5MHz. No ext. components; small 8-pin package version
MSMXVHF.	High Frequency Mixer and Selectable Very High Frequency Lowpass/Bandpass Filter	Ultrahigh frequency mixer. Adjustable gain 0, 10 or 20 dB	No ext. components; Integrated filter and mixer for IF. External clocks for mixer and filter functions


If you have any questions, or require additional information on any of the products, please contact a member of the Sales Team

Tel: 01189 324 600

sales@bt2000.co.uk



Mixer & Tunable Lowpass/Bandpass Filter

- Downconverter for signal analysis
- Tune bandpass to detect signals
- Tune lowpass for telecom/voice discrimination

Remote Sensor Interface

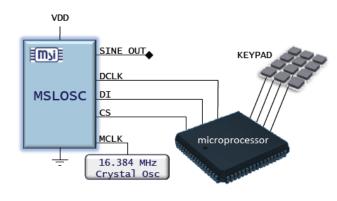
- Uses 1V battery for power
- Bandpass filtering for sensor harmonic analysis
- Receive channel for annunciation for motor failure

Audio/Video IC/

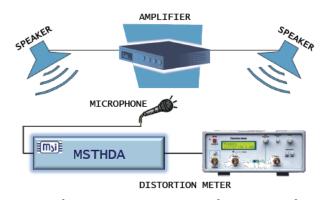
∃M2i

	Name	Filter Type and Description	Features	Benefits and Comments
				Fewest ext. components of any competing
20	MSGEQ5A*	Five Band Graphic Equalizer Display Filter.	Low current < 1mA. On-chip oscillator	solutions. Low power consumption ideal for
-11-0		(100Hz, 330Hz, 1kHz, 3.3kHz and 10kHz)	and 20 dB of gain	portable devices
		Seven Band Graphic Equalizer Display Filter.		Fewest ext. components of any competing
_	MSGEQ7*	(63Hz, 160Hz, 400Hz, 1kHz, 2.5kHz, 6.25kHz	Low current < 1mA. On-chip oscillator	solutions. Low power consumption ideal for
-		and 16kHz)	and 20 dB of gain	portable devices
3			Programmable freq. and amplitude.	Small 8-pin device for board space savings.
1	MSLOSC*	15 Hz to 64 KHz All Silicon Sine Source	Low distortion	Programmable freq. from 15Hz to 64kHz
				No clocking noise unlike digital or sample data
	MSVL14	14 MHz Video Lowpass Filter	filter. Low distortion	filters. Low noise and low distortion
			Harmonic measurements to 2MHz. No	5 Bandpass filters harmonically spaced. Ideal for
	MSTHDA*	Total Harmonic Distortion Analyzer	microprocessor needed	audio distortion analysis applications

If you have any questions, or require additional information on any of the products, please contact a member of the Sales Team



Tel: 01189 324 600 sales@bt2000.co.uk


Application Examples

Low Distortion Sine Source

- 15 Hz to 64 kHz
- Digitally controlled
- Ideal for ATE or portable test equipment

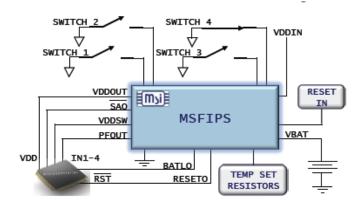
- Use microphone input for room audio analysis
- Use uncommitted op amp on MSTHDA to sum filter outputs
- Use line out for amplifier distortion tests

ISW

Distortion Meter

Communications and Specialty ICs

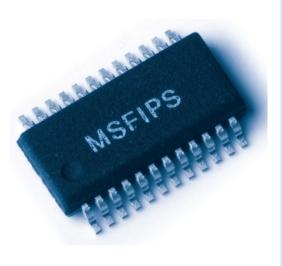
	Filter Type and		
Name	Description	Features	Benefits and Comments
MSSPSI"	Smart Programmable Sensor Interface	Low noise input: <30nV / \Hz at 100 Hz. External processor control; on-chip 12- bit ADC. Offset adjust and temperature sensor. Adjustable gain up to 18 dB	3.3V to 5.5V operation. Process signals from a sensor or MEMS device. 6-pole Elliptic anti-aliasing, 6-pole Butterworth highpass, 7th order. Elliptic lowpass filters, can be bypassed via the serial interface
MSCPSI	Controller Programmable. Sensor Interface	Low noise input: <30nV / \Hz at 100 Hz. Internal PICTM processor; on-chip 12- bit ADC. Offset adjust and temperature sensor. Adjustable gain up to 18 dB	3.3V to 5.5V operation. Process signals from a sensor or MEMS device. 6-pole Elliptic anti-aliasing, 6-pole Butterworth highpass, 7th order. Elliptic lowpass filters, can be bypassed via the serial interface
MSCBT"	Communications. Baseband. Transceiver	50 CTCSS squelch tones filtered. CDCSS code filter	Bi-directional transmit and receive gain volume and filtering. Internal highpass filter prevents voice from effecting tone transmission
MSDET"	Tone Detector	Low power of less than 2 mW at 2.7V. I and Q detector driven by on-chip VCO	Analog PLL provides better noise immunity than digital designs. Center frequencies from 1 Hz to 100kHz detected and FSK decoded.
MSFIPS"	FIPS-140 Level, 4+ Security Supervisor	Temperature sensor. Bandgap reference for under/over voltage detection. Four switch inputs (three with polarity control)Automatic battery	Provides the sensor interfaces needed for the Federal Information. Processing Standard (FIPS) 140. Wide operating voltage range from 2.4V up to 5.5V
MSLSA"	Low Power. Spectrum Analyzer	6 Filters with sixth octave spacing. Adjustable gain 0, 10 or 20 dB	Center frequency to 100 kHz. No ext. components, clock programmable
MSRFIF*	Radio Frequency. Interface Front End	Self powered to 250MHz. AM Modulator; AM/BPSK Demodulator	Powered by RF energy from reader. Voltage output for low power controllers. Ideal for energy harvesting apps
MSSCSA"	Single Chip. Spectrum Analyzer	6 Filters with sixth octave spacing. Adjustable gain 0, 10 or 20 dB	Center frequency to 2.2 MHz. No ext. components, clock programmable
MSTHDA-1	Total Harmonic. Distortion Analyzer	Harmonic measurements to 3.4MHz. No microprocessor needed	5 Bandpass filters harmonically spaced. Ideal for RFID applications

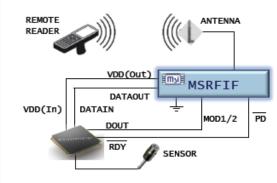

If you have any questions, or require additional information on any of the products, please contact a member of the Sales Team

Tel: 01189 324 600


sales@bt2000.co.uk

2000 Application Examples


Advanced Alarm Security


- Monitor Reset line to catch "glitchers"
- Anti-tamper detection for alarm box
- Voltage monitor for battery switchover
- Temperature monitoring for freeze spray hack

Energy Harvesting

- Uses RF to power the system; no battery
- Use micro power microcontroller for control
- Transmits sensor data on received carrier

had											Ø	9		192310D)				er e		B ah					te de la de de de	enel Hear					4
		idbi <u>:hn@</u>)00	<u>) </u>		JY													-									5	E		A Construction	
	fi			5						G																					
		PACKAGE P SOIC	4	ω ,	<u>e</u> (œ	16	8	80	16	58	80	16	8	16	80	80		PACKAGE IP SOIC	8	16	8	16	80	8						
		OM NO	4	ω 4	<u>۽</u>	œ	9	æ	80	16	28	80	16	8	16	80	80		ONA dia	æ	16	æ	16	æ	8						
		ADABT		S C	5	CE	СĶ	oLK	CLK	CLK	CLK	CLK	CLK	CLK	CLK	сIK	СLK		RDABL	OLK	CLK	OLK	CLK	CLK	CLK					Jama	
		MAX FREQ	00111	20 KHZ	ZNKHZ	3 KHz	3KF	20 kHz	3 kHz	6 kHz	6 kHz	3 MHz	3 MHz	1 MHz	1 MHz	3 MHz	1 MHz		MAX FFEC	20 kHz	20 kHz	5 KHz	5 kHz	5 kHz	ZH 009						
		SUPPLY CURRENT		1 mA	Am r	200 UA	200 uA	1 mA	200 uA	200 uA ~ 1.5 mA	200 uA ~ 2.7 mA	24 mA	24 mA	4 mA	4 mA	24 mA	4 mA		SUPPLY CURRENT	1 mA	1 mA	200 uA	200 uA	1 mA	200 uA						
		GAW SELECT		>	<	:	×			×	×		×		×				GAN SELECT		×		×							E E	
		CORNER	1001	100:1	1:001		100:1	100:1	100:1	85.3:1	85.3:1		12.5:1		12.5:1	12.5:1	12.5:1		CORNER		1000:1		1000:1	1000:1	1000:1						
and the second se		CLOCK TO CORNER	102	1:02	1:02	50:1	50:1			42.65:1	42.65:1	6.5:1	6.5:1	6.5:1	6.5:1				CLOCK TO CORNER	100:1	100:1	100:1	100:1								
NAME AND ADDRESS OF		Skth	Octave	~ >	< :	×	×	×	×	×	×	×	×	×	×	×	×		Deep	×	×	×	×	×	×						
		BAND PASS Third	Octave	×	< :	×	×	×	×	×	×	×	×	×	×	×	×		NOTCH Wide	×	×	×	×	×	×				ļ	7	
		EN B	Octave	×	< >	×	×	×	×	×	×	×	×	×	×	×	×		Warrow	×	×	×	×	×	×						
		ENptic	>	× >	< :	×	×	×	×	×	×	×	×	×	×	×	×		ENptic	×	×	×	×	×	×					40 888	
		LOW PASS Bessel	>	×	< >	×	×	×	×	×	×	×	×	×	×	×	×		HIGH FASS Bessel	×	×	×	×	×	×						
		Butter-	worth	~ >	< >	×	×	×	×	×	×	×	×	×	×	×	×		Butter- worth	×	×	×	×	×	×				j.		MARIA
when the short of a		RART NUMBER	10LOT	MSFS1	MSFSZ	MSFS3	MSFS4	MSFS6	MSFS6	MSLFS	MS2LFS	MSHFS1	MSHFS2	MSHFS3	MSHFS4	MSHFS6	MSHFS6		PART NUMBER	MSHN1	MSHN2	WSHN3	MSHN4	MSHN5	MSHN6						
1				D	Ø	U.S.			21	2	0		<u>1</u>			10	10				1. 100		3		1		1	 	L		
And And									NU.		25.00									1000 1000 1000 1000 1000 1000 1000 100	antan antan			****							

1

-

aladaahad

HUI

HL

TTTT

₹W 2000 Curton Product Capabilities

Engineers working for Mixed Signal Integration have successfully completed more than 100 custom integrated circuit designs (ASIC). Each designer is an experienced veteran in both analog and mixed signal technologies. MSI is especially well known for its command of both switched capacitor and integrated RC active filters.

MSI's designers offer several key design capabilities:

- Ultra-low power consumption and low voltage operation down to 1v supply
- Switched capacitor and active filters including high frequency filtering
- Low noise. low distortion audio

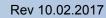
Rroadband

echnology

System designs using off the shelf components can be expensive to manufacture and readily copied. Integrating your design will reduce production costs, increase performance, and protect your research and development from competitors. It can also increase the reliability of your system, decrease the board space required, alleviate inventory costs, and cut down on power consumption and heat dissipation. Often alignment and tuning routines can be eliminated by using a custom IC design.

MSI is especially skilled in chip partitioning and system integration. Our engineers can work with you to suggest other portions of your system for integration. This leads to a better payoff for your custom chip development. MSI can also show you the optimum cost and performance trade-offs. We will recommend the correct technology for your project, which can often lead to a higher level of integration.

MSI provides a turn-key ASIC solution. In addition to design and development of the ASIC, MSI manufactures the production volume parts for its customers. This includes foundry, packaging and testing of the ASICs prior to shipment.



en le

168

Han

Broadband Technology 2000 Limited Phone: +44 (0)1189 324600 Fax: +44 (0)1189 730571 Email: sales@bt2000.co.uk

