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Executive Summary

This document, BeGREEN D4.3, consolidates BeGREEN’s final results on Al/ML-assisted energy efficiency for
5G/6G-ready RANSs. It refreshes the Intelligence Plane introduced in BeGREEN D4.2, quantifies the Al/ML
plane’s own energy footprint, validates closed-loop control with O-RAN components, and reports end-to-
end gains across VRAN, live 5G NSA, relay-enhanced RANs, and edge scenarios hosting UPF and Al services.

Chapter 2 revisits the Intelligence Plane, keeping the core Al Engine with near/non-RT RIC integration while
adding hooks for CF-mMIMO and ISAC. Interfaces from BeGREEN D4.2 are preserved; new policies and
telemetry enable sensing-assisted control and user-centric coordination. We analyse the energy cost of the
Al/ML plane itself—training, serving, storage, orchestration—against the network-side savings it drives,
showing that BeGREEN’s lightweight models achieve favourable trade-offs between size, accuracy, and
inference rate. Final validations benchmark serving workloads, automate dataset creation and model
training with energy metering, and verify Al Engine—RIC workflows on a representative cell on/off loop,
including conflict management procedures. Additional scenario validations will be reported in BeGREEN D5.3
as part of PoC#1.

Chapter 3 presents the final evaluation of five Al/ML-assisted methods to enhance energy efficiency. In
VRANSs, we study cache isolation and LLC utilisation and introduce MemorAl, a lightweight controller that
steers cache/CPU to active threads, lowering platform power without harming throughput or latency. For
carrier on/off, a compact classifier uses traffic/context features to trigger sleep/activation with guardrails,
delivering energy savings without SLA regressions in offline and lab tests. In relay-enhanced RANs, we define
RUE identification, compare activation policies, and quantify coverage, sum-rate, and uniformity gains versus
no-relay baselines, including detailed power consumption. For UPF, we characterise compute—power curves,
validate experimentally, and build a traffic-aware ML policy for scaling and placement that reduces energy
on realistic traces at constant QoS. Finally, we jointly orchestrate vRAN and edge-Al services with a multi-
objective coordinator that maintains QoS while cutting total energy in static, heterogeneous, and dynamic
scenarios.

Chapter 4 concludes that BeGREEN delivers an O-RAN-aligned Intelligence Plane extended for CF-
mMIMOY/ISAC, practical guidance to ensure the Al plane yields net energy savings, and validated Al-driven
procedures that reduce energy without QoS penalties. The accompanying assets—configurations, policies,
measurement scripts—are ready for replication in PoCs (D5.3) and for transfer to standardisation and
industry pilots.
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1 Introduction

The transition to Beyond 5G (B5G) and 6G networks has underscored the urgent need for sustainable
solutions to mitigate the rising energy consumption of next-generation communication systems. As network
operators strive to meet the growing demands for ultra-reliable low-latency communications, massive
connectivity, and enhanced data rates ensuring energy efficiency has become a critical priority. The BeGREEN
project adopts a holistic approach to evolving radio access networks (RANs) that not only accommodate
increasing traffic and service levels but also consider EE to meet global greenhouse gas emissions reduction
targets set by the EU and other countries around the world.

BeGREEN D4.3 comprises the final evaluation of the efforts in BeGREEN Work Package 4 (WP4), focused on
developing and validating Al/ML-driven solutions aimed at optimizing energy efficiency across the RAN, Core,
and Edge domains. This deliverable builds on the two previous deliverables produced by WP4: BeGREEN D4.1
[1] reviewed the State-of-the-Art (SotA) and challenges, and presented the initial definition of the BeGREEN
O-RAN Intelligence Plane and the proposed Al/ML-driven methods to enhance energy efficiency. BeGREEN
D4.2 [2] described the progress on the development of the proposed solutions and presented their initial
validation.

The BeGREEN Intelligence Plane, central to this framework, continues to evolve as a cross-domain
management entity that integrates advanced Al/ML technologies to monitor, analyse, and optimize network
operations. By leveraging the Intelligence Plane's Al Engine, Service Management and Orchestration (SMO),
and RAN Intelligent Controllers (RICs), BeGREEN addresses the multifaceted challenges of EE. These
challenges include the management of dynamic network environments, the efficient utilization of virtualized
RAN (VRAN) resources, and the incorporation of emerging technologies such as Reconfigurable Intelligent
Surfaces (RISs), Integrated Sensing and Communication (ISAC), and Relays.

BeGREEN D4.3 expands on the solutions and methodologies introduced in prior deliverables and focuses on
their refinement, integration, and comprehensive evaluation. It details advancements in Al/ML model
development and optimization, the deployment of energy-saving strategies, and the validation of these
solutions in realistic and controlled scenarios. This deliverable also explores the joint orchestration of RAN
and Edge Al services, the management of energy-efficient user-plane functions, and the enhancement of
data-driven decision-making processes.

The document is structured as follows:

e Chapter 2 elaborates on the final architecture of the BeGREEN Intelligence Plane, including
enhancements to its components, interfaces, and functionalities. This chapter emphasizes the
integration of advanced energy metrics such as Energy Score and Energy Rating and details the
incorporation of cutting-edge technologies like RIS and ISAC. Finally, the functionality of core
procedures and components is validated.

e Chapter 3 provides a thorough evaluation of the proposed Al/ML-driven solutions, showcasing their
performance in addressing key energy-saving challenges. Key focus areas include vRAN resource
allocation, QoS-aware cell on/off switching, intelligent relay deployment, traffic-aware compute
resource management, and joint orchestration of RAN and Edge services.

e Chapter 4 summarises the findings and key insights from the evaluations, highlighting the impact of
BeGREEN's solutions on improving energy efficiency across network domains.

Through the advancements described in WP4 and evaluated here, BeGREEN reaffirms its commitment to
driving innovation in energy-efficient network design and operation. By addressing critical challenges and
demonstrating the feasibility of its solutions, BeGREEN paves the way for sustainable, scalable, and
intelligent B5G and 6G networks that balance performance and environmental responsibility.
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2 BeGREEN Intelligence Plane

The main architecture of the Intelligence Plane, including its main components and interfaces, was presented
in BeGREEN D4.2 [2]. While most of the architecture remains largely unchanged, focusing on the integration
of the Al Engine and the RICs, additional analysis have been conducted to incorporate novel technologies
investigated in the BeGREEN WP2 and WP3, such as cell-free massive Multiple-Input Multiple-Output (CF-
mMIMO) and ISAC. The updates to the architecture are presented in Section 2.1, along with a summary of
the complete Intelligence Plane architecture described in BeGREEN D4.2 [2].

Section 2.2 focuses on analysing the energy consumption of the Al/ML plane itself. With the rise of Al/ML,
significant effort has been dedicated to developing Al/ML-driven optimizations, supported by models with
diverse characteristics. This is also the case for BeGREEN, whose ML models aim to enhance the energy
efficiency of beyond 5G and 6G networks. However, in this context, it is also relevant to assess the energy
efficiency of these models, exploring the trade-offs between energy consumption and model performance
and utility. Notably, the BeGREEN models presented in Chapter 3 do not require heavy training or high
resource consumption due to their characteristics. Nevertheless, Section 2.2 aims to provide insights and
clarifications into this topic.

Energy consumption is also considered in Section 2.3, which presents the final validations of the Intelligence
Plane. First, complementing the benchmark presented in BeGREEN D4.2 [2], the energy consumption of the
Intelligence Plane is evaluated based on the workload generated by serving model outputs. Additionally,
validation of model training is presented, focusing on energy consumption and the automation of dataset
creation. Then, the interaction between the Al Engine and the RICs is validated by presenting the main
workflows and procedures involved in the BeGREEN Al/ML-driven control loops, using as example the cell
switching on/off use case. Finally, validation of the conflict management procedures is discussed. Further
validations will be included in BeGREEN D5.3 as part of the use cases defined within proof-of-concept 1
(PoC1).

2.1 Intelligence Plane Architecture

Figure 2-1 illustrates the final architecture of the BeGREEN Intelligence Plane. As highlighted in previous
deliverables, the proposed architecture addresses two main objectives. First, to provide a serverless
execution environment hosting the Al/ML models through the Al Engine, which provides inference and
training services for rApps/xApps, effectively integrating Al/ML into the O-RAN architecture. Second, to
incorporate the necessary interfaces and components to manage the RAN and Edge technologies, supporting
BeGREEN's energy efficiency optimizations. Thus, this architecture represents BeGREEN’s final design,
integrating its key innovations and contributions.

Next subsections detail the concepts and implementation of the main building blocks of the architecture.

2.1.1Intelligence Plane baseline

The Intelligence Plane baseline is formed by the main components enabling programmability and intelligence
in the O-RAN architecture, i.e., the Non-RT RIC within the SMO and the Near-RT RIC, plus the BeGREEN Al
Engine. As the complete architecture was already described in BeGREEN D4.2 [2], in this BeGREEN we provide
a comprehensive summary of the key components, interfaces, and workflows to ensure a clear
understanding of the validations presented in Section 2.3.

BeGREEN [SNS-JU-101097083] 14
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Figure 2-1: Final BeGREEN Intelligence Plane architecture

2.1.1.1 AlEngine

The Al Engine enables the implementation and exposure of Al/ML services in a loosely coupled manner. This
means that models are trained and hosted in the Al Engine, with their inference exposed to rApps and xApps
rather than being embedded directly within them. As noted in BeGREEN D4.2 [2], this approach promotes
model reuse and allows ML and RAN control developers to focus on their respective areas of expertise,
leveraging Al/ML and RAN management services as independent yet interoperable components. Additionally,
the Al Engine framework implements serverless inference, enabling model offloading through serverless
computing and hardware acceleration. This permits to leverage Al Engine benefits both in the non-RT and
near-RT domains, as well also in other domains such as the 5G Core or the Edge services, as illustrated in
Figure 2-1 through AIA-x interfaces.
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Implementation-wise, the Al Engine has been developed using MLRun® and Nuclio? frameworks, which
provide MLOps and serverless capabilities in Kubernetes environments. As detailed in Section 2.3, the main
validation and evaluation efforts has been focused on AlA-1 interface for inference, connecting the Al Engine
and the non-RT RIC. Nevertheless, similar approach can be applied to the near-RT RIC and the other domains.

The Al Engine also provides specific BeGREEN metrics, the Energy Score and the Energy Rating [2], which are
used to determine the absolute and relative performance of the network entities in terms of EE, allowing to
support BeGREEN optimisations and track their impact. The Energy Score and Energy Rating functions in
BeGREEN calculate the EE in the network at the level of any component that measures both the volume of
data that it transmits and its energy consumption. In addition, an Energy Measurement function enables the
BeGREEN energy-saving ML functions to calculate their own energy consumption. This allows that the
measured energy savings account for the additional energy overhead required to run these components,
providing a net savings estimate. Additional details about these functions are provided in Section 2.2.1.

Additionally, the Al Engine includes a Model Catalogue and Selection Function. As described in Section 2.2.4,
the objective of this function is to provide energy efficient model selection according to the required
accuracy. AIA rApps and xApps can make use of this function to serve the appropriate model according to
the request of the consumer rApps and xApps.

2.1.1.2 SMO and Non-RT RIC

The main role of the SMO in BeGREEN is to host the functions required to control and monitor RAN and Edge
resources via 01/01+ and 02/02+ interfaces, which are exposed to control rApps. Therefore, in addition to
the standard O1 and 02 functions defined by O-RAN for managing O-nodes and O-Cloud [3], it incorporates
components and interfaces related for RIS, Relays and Edge resources. Details on these additional functions
are provided in the following subsections, which focus on specific technologies.

Regarding the non-RT RIC, as was detailed in D4.2 [2], two main functionalities are implemented and
validated. First, the life cycle management (LCM) of rApps, including: (i) control rApps devoted to cross-
domain optimisations targeting EE, (ii) Al Engine Assist (AIA) rApps exposing the Al Engine services, and (iii)
producer rApps exposing data such as Key Performance Metrics (KPMs). Second, the non-RT RIC implements
the R1 interface to enable rApps to exchange data among them and to access the SMO (RAN and Edge control
and monitoring) and the near-RT RIC (xApp management through A1 policies) services.

The key component to implement the R1 interface, particularly the Data Management and Exposure (DME)
functions, is the Information Coordination Service (ICS) component, provided by the O-RAN Software
Community (OSC) [4]. This component manages the available data types and the communication between
data producers and consumers. In BeGREEN we also leverage this service to expose the inference outputs of
the ML models, which are defined as data types and produced by the AlIA rApps. In BeGREEN D4.2 [2] it was
defined the model of the information types, the AIA rApps and the control rApps, which have been validated
in the different demonstrations of the project® .

The final implementation of the non-RT RIC has also focused on the realization of the Al interface to manage
Al policies related to Energy Savings. As will be detailed in Section 2.3.4, we have adopted the models
presented in BeGREEN D4.2 [2], both in the Non-RT and Near-RT RIC sides, allowing to exchange Al policies
related to the operational status of the cells between the control rApps and the Energy Saving xApps.

1 https://www.mlrun.org/

2 https://nuclio.io
3 https://www.youtube.com/watch?v=_NO0JYOSepgc
4https://youtu.be/lauc -ffb8E?si=LrilbOuCSdZKZ mu
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2.1.1.3 Near-RT RIC

The Near-Real-Time RIC in the BeGREEN architecture acts as the central action and decision-making entity
for RAN control, hosting xApps that operate with under second-level responsiveness. It receives Al policy
guidance from the Non-RT RIC via the A1l interface and relies on timely, telemetry data from the RAN. To
ensure a consistent and standardised data flow, the Telemetry Gateway (TGW) is a central component in the
BeGREEN architecture that ensures seamless integration and interoperability across heterogeneous RAN
infrastructures. Described in BeGREEN D4.2 [2], it collects, translates, and standardises telemetry data from
multiple interfaces—including O-RAN compliant (E2, O1) and non-compliant sources—into a unified format
for use by the Near-RT RIC and its xApps. By decoupling data processing from specific vendors or protocols,
the TGW enables consistent metric generation, supports near real-time control actions, and allows advanced
applications like energy saving and mobility management to operate effectively across diverse network
environments.

Among the xApps deployed, the Energy Saving xApp and the Handover Manager xApp are key components
of the BeGREEN system. The Energy Saving xApp dynamically switches cells on or off and adjusts power levels
to reduce energy consumption based on telemetry inputs, traffic predictions and issued Al policies,
achieving substantial savings while maintaining QoS. In parallel, the Handover Manager xApp leverages
advanced algorithms like Mobility and Load Aware proActive haNDover Algorithm (MOLA-ADNA) to optimise
UE mobility across the network, outperforming traditional reactive methods through proactive, multi-metric
analysis that includes RSRP, RSRQ, throughput, and cell load. These xApps are tightly integrated with the
dRAX databus and the TGW, allowing seamless access to metrics and enabling coordinated control actions.

To ensure consistent system behaviour, in BeGREEN we have introduced a collaborative conflict mitigation
framework within the Near-RT RIC. Conflicts between xApps or Al policies—whether objective, resource-
based, or scope-related—are addressed through detection, resolution, and avoidance mechanisms. A
Conflict Manager entity tracks xApp subscriptions, manages policy distribution, and monitors the state of
RAN elements through a centralised database. Each xApp includes a conflict avoidance handler that reacts
to alerts and policies in real-time. This architecture allows the system to resolve control conflicts proactively,
ensuring harmonious operation across the Al-driven control loops and enabling scalable, policy-aware
orchestration for energy-efficient and intelligent RAN management.

2.1.2Edge domain

As illustrated in Figure 2-1 and described in previous BeGREEN D4.1 [1] and D4.2 [2], BeGREEN incorporates
into the Intelligence Plane the management of Edge domain resources. According to the O-RAN architecture,
edge resources can indeed be considered part of the O-Cloud, containing virtualized RAN components such
as the CU or the DU [5]. In this context, the work detailed in Section 3.1 presents an Al/ML-assisted method
to address the problem of compute resource allocation in virtualized RAN under shared computing
infrastructure. Additionally, in BeGREEN, we consider the dynamic management of edge resources dedicated
to other functions closely integrated with the RAN, such as the User Plane Function (UPF) of the 5G Core or
Al services. Details on the procedures and algorithms for EE in these domains are provided in Sections 3.1
and 3.4, while in this section we briefly summarize the main components, interfaces and functionalities that
would be required in the O-RAN architecture to integrate the proposed solutions, as illustrated in Figure 2-1.

First, we consider an Edge resource controller, placed in the Edge, which similarly to the O-RAN Infrastructure
Management Services (IMS) [6] should expose methods to allow the dynamic monitoring and management
of edge resources. Specifically, the following services should be available:

e Inventory and policies: The Edge Resource Controller shall expose methods to retrieve server
characteristics, including the pool of available resources (e.g., number and type of CPUs and GPUs)
and available energy-saving policies (e.g., performance or energy-saving mode, supported P-states
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and C-states, etc.).

e Monitoring: The Edge Resource Controller shall provide status updates, metrics, and alarms related
to resource utilization and availability (e.g., CPU/GPU load, power consumption, energy usage).
Consumers, such as the Edge Control Function located at the SMO, can subscribe to these metrics
via the proposed 02+ interface. Combined with performance indicators of hosted functions, such as
data volume processed by the CPU, energy-related metrics may be used to compute the Energy
Score and Rating of the servers.

e Dynamic management: The 02+ interface shall expose functions and policies for dynamic resource
management, including CPU/GPU allocation and configuration. Non-RT control shall be the minimum
time granularity, though near-RT control could be beneficial in some cases (e.g., managing C-states).

In order to integrate these functionalities into the SMO, BeGREEN proposes (i) an Edge Control Function,
which should implement similar functionalities as the Federated O-Cloud Orchestration and Management
(FOCOM) manages, and (ii) a 02+ interface, working similar as 02-IMS [7]. Indeed, both the proposed
function and interface could be incorporated into a broader specification of FOCOM and the 02 interface to
support the general management of edge resources beyond the RAN, as highlighted in Sections 3.1 and 3.4.

2.1.3Relays

The development of different relay control functionalities leads to the improvement of decisions of relay
deployment, relay activation/deactivation, etc., which can improve the system performance and also provide
a significant reduction in the energy consumption. BeGREEN has considered two types of relays: (i) the use
of fixed relays to support 5G in the context of the recently Integrated Access and Backhaul (IAB) technology
introduced by 3GPP [8], and (ii) the concept of UE-to-network relaying, in which a Relay-UE (RUE) has the
capability to relay the traffic of another UE to/from the network in a two-hop communication manner [9].
Then, the relay represented in Figure 2-1 can be either an IAB-node or a Relay-UE. In case of a RUE, it is
connected with the RU through the Uu interface. In case of the relay being an IAB-node, this interface Uu is
also used to connect IAB-node Mobile Termination part (referred as IAB-MT) with the RU and, in addition,
the interface F1 represented in dotted line in Figure 2-1 is used to connect the DU part of the IAB-node
(referred as IAB-DU) with the CU part of the IAB-donor. The physical realisation of these interfaces is done
on top of the Uu interface between the IAB-MT and the RU.

As introduced in BeGREEN D4.1 [1] and D4.2 [2], the considered relay control functionalities cover different
aspects. On the one hand, a functionality for the identification of periods of time and geographical regions
with high traffic demands and poor propagation conditions has been proposed in BeGREEN. On the other
hand, another relevant relay control functionality is the identification of UEs that can be good candidate to
serve as RUEs (i.e. UEs with relaying capabilities that may serve neighbour users with poor propagation
conditions with respect to the gNB). Additionally, a functionality for the identification of the necessity to
deploy fixed relays and the determination of the most adequate geographical location for their placement is
also considered. Finally, BeGREEN considers the dynamic activation/deactivation of these fixed relays/RUEs.
According to this, relays/RUEs are activated when needed to serve other UEs located in the coverage hole
regions and are deactivated when they are not necessary, with the aim to minimize the energy consumption.

For the implementation of the previously mentioned relay control functionalities, several components and
interfaces are necessary in the BeGREEN architecture, as described in detail in D4.2 [2]. On the one hand, a
relay control placed at the SMO is in charge of the interaction with the relays for the collection of network
measurements and the relay reconfigurations. This is done through an extended O1 interface, denoted as
O1+ interface in the BeGREEN architecture. Measurements collected in the gNBs are sent to the SMO
through the O1 interface. The different relay control functionalities are sustained by different rApps located
in the Non-RT RIC. In particular, a Data Collection rApp oversees the management of the collection of

BeGREEN [SNS-JU-101097083] 18



[
O
D4.3 — Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane BEGREEN

measurements in the RAN. Moreover, a Relay Management Function is in charge of the coordination and
management of the different relay control functionalities. Each of these functionalities are sustained by
different Al/ML models and databases hosted in the Al Engine. Finally, a set of AIA rApps are also necessary
in the Non-RT RIC to cover different aspects such as data pre-processing, performance monitoring of the
Al/ML models, model inference exposure and determination of the necessity of model updates or model
retraining. More details of the architecture, functionalities, workflows and algorithms are provided in
BeGREEN D4.2 [2].

2.1.4RIS

Another key stone of BeGREEN EE strategies is the use of RISs. The ability to dynamically adapt RIS behaviour,
encompassing decisions around their strategic placement and real-time configuration, unlocks substantial
gains in system efficiency. As introduced in BeGREEN D4.2 [2] and D3.3 [10], RIS management is done by
both the near-RT RIC and the non-RT RIC.

The control of the RIS is mainly required by coverage extension related use cases, where the RIS can reflect
incoming RF signals from UEs and gNBs enabling communication in those scenarios where the signal is too
weak, or increasing signal quality to improve the RAN efficiency. Such use cases usually require configuring
the RIS with a pre-calculated codebook to reflect the signal towards the desired angles (azimuth 6 and
elevation ¢ ). However, deciding which are the optimal angles is not trivial, especially in scenarios highly
affected by multipath. Therefore, approaches such as fast beamsweeping or exhaustive search outside the
codebook are normally required. For this reason, the RIS control channel should also support per-element
phase configuration. In addition to this, RIS can also support advanced ISAC solutions to locate the user.
Besides the benefit of obtaining positioning information, knowing the location of the user can improve EE by
improving the communication channel, including optimized beamforming and coverage extension. For those
localization use cases, RIS control may require supporting the configuration of the phase offset from a given
codebook, e.g., to adjust the phase of the signal at the receiver and allow for Angle of Arrival (AoA)
positioning. Integrating such RIS control mechanisms within the BeGREEN architecture requires RIS-specific
components and interfaces, as presented in Figure 2-1 and previously discussed in BeGREEN D4.2 [2] and
D3.3 [10]. At the SMO, the rApps handle the non-RT use of RIS (such as codebook training, non-RT coverage
extension, position requesting, etc.), and the 01+ includes end points to directly interact with the RIS (see
D3.3 for more details). On the other hand, the near-RT RIC will host the xApps involving the near-RT use of
RIS (fine-grained configuration, mobility support, near-RT coverage extension, etc.), and will implement the
RIS related E2SM, such as the E2SM-SSC and E2SM-SSM (see BeGREEN D4.2 [2] and BeGREEN D3.3 [10] for
more details).

Finally, the BeGREEN architecture will also include the in-site control of the RIS through the F1-x interface
and possibly dApps [11] located in the gNB. dApps may perform RIS+ISAC related actions (e.g., I/Q sample
processing) or just become a proxy for the RIS xApps, offloading control overhead from the E2+ to the F1-x
interface. Also, as discussed in BeGREEN D3.3, RIS related xApps may interact with the dApps through the
E2SM-SSM and E2SM-SSC using the E2+ interface. We validate this RIS integration model into the BeGREEN
architecture in following Section 2.3.6.

2.1.51SAC

The primary issue that arises when considering non-3GPP access networks as sensing information sources is
how these can report their metrics through the 5G system in a standardised and efficient manner. BeGREEN
intends to do this in a lean manner without involving the full 5G system but considering only the RAN part
and the RICs. Given the work carried out in BeGREEN with a non-3GPP non-Wi-Fi node, such as the Sub-6
sensing system presented in BeGREEN D3.1, D3.2 and D3.3, it is proposed to extend the architecture to allow
the integration of these “external” sensing nodes.
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Figure 2-2: Proof of concept for sensing data exposure from non-3GPP wireless nodes to the RIC

The output of the sensing information from these devices is exposed to the RAN segment in a secure way
through suitable extensions of the E2 interface of the Near-RT RIC. The E2 interface, which facilitates
communication between the near-RT RIC and RAN nodes also employs SCTP over IP, with a suitable protocol
for the communication over the E2 interface (E2AP) handling the control signalling at the application layer.
An E2 Service Model (E2SM) for sensing is required to establish the communication between the sensing
node and the RIC, and this communication is carried out through publication and subscription mechanisms
to facilitate the exchange of information between xApps and RAN functions.

The messages defined by the E2AP protocol, also known as procedures, encapsulate different E2SMs. These
messages enable the implementation of functionalities associated with both the control and monitoring of
RAN metrics. From the final BeGREEN architecture shown in Figure 2-1, the ISAC node represented therein
corresponds to the E2 node depicted in Figure 2-2, where the E2 Agent receives sensing data the sensing
data processing unit. This processing is performed locally and generates sensing information, in the form of
heatmaps that can be represented in a visualization tool, e.g. Grafana. In particular, a new sensing SM has
been developed, which is integrated as a library in each of the agents involved: the near-RT RIC, the xApps,
and the E2 agent.

2.1.6Cell-free networks

A cell-free (CF) architecture is conceived as a user-centric architecture that aims to provide the best link
quality at any time. To this end, distributed Access Points (APs) are pervasively deployed, and the best ones
are selected to serve each of the user. Hence, a cell-free system requires coordination among the different
APs, a joint processing, and dynamically adapting the selected of APs over time according to the position of
the UEs and their needs. In the scope of O-RAN, O-RUs are the cell-free APs and the O-DUs compute the joint
processing. A cell-free system makes use of the distributed APs to erase cell boundaries. However, in an O-
RAN deployment, there are logical boundaries as one UE can be served by different O-RUs that are not
connected to the same O-DU. We refer to this user as the edge user.

When serving an edge user, one O-DU will be the main O-DU and will receive user-related data from O-RUs
that are connected to the other O-DUs, and the latter will share this data through the Inter-O-DU interface.
Therefore, we need the O-DUs to cooperate and collaborate in executing the joint processing. This
coordination is done by enabling an interface that connects different O-DUs as depicted in Figure 2-1.
Although still not fully specified, this interface, denoted as D2, is currently under the O-RAN Alliance's
standardization process [12].

Regarding the Near-RT RIC, it can determine whether the UE is a regular or an edge user and assign the best
RUs to this UE. This process, which needs to be updated over time as the user moves, might be done by an
XApp.

2.2 Energy efficiency in the Intelligence Plane

Since the goal of the BeGREEN project is to reduce energy consumption required to operate and manage
radio networks, it is important to also minimize the energy consumed by the functions that BeGREEN
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employs to achieve this objective. The energy consumed by energy saving functions must be measurable to
provide comparable baseline measurements to calculate the savings achieved by BeGREEN energy saving
functions. In the BeGREEN project, EE is calculated as the ratio of bits transmitted per joule of energy. The
Al Engine hosts specific functions to facilitate the measurement and calculation of both absolute and relative
EE metrics as described in Section 2.2.1.

Additionally, in this section, the document analyzes the energy efficiency of the Al/ML models themselves,
emphasizing the need to balance computational resource consumption with model performance. Key
aspects covered include:

e Energy Score and Rating Functions: Metrics to measure and compare the energy efficiency of
network components in bits per joule, enabling data-driven optimization.

e Energy Consumption of AI/ML Models: Evaluation of trade-offs between model complexity,
accuracy, and energy usage, with techniques like dimensionality reduction to minimize overhead.

e Model Training Energy Measurement: A framework to quantify the energy cost of training,
validating that CPU usage is the dominant factor, and how to measure the energy cost of model
training.

¢ Model Selection Function: A proposal for an Al Engine feature to dynamically select the most energy-
efficient model that meets accuracy requirements, promoting sustainability in decision-making.

2.2.1Al Engine Energy score/rating functions

The Energy Score function provides an absolute measure of energy efficiency for a component in bits per
joule. The Al Engine hosts it as a serverless function to perform the calculation of energy efficiency scores
for components in the network. The basic requirement to calculate energy score for a network entity such
as a cell or gNB is that the energy consumption and a data volume and/or throughput measures are available.
At layers where it is available (e.g., the PDCP layer), the measurement should be net number of
retransmissions.

The Energy Score function is a very simple function that performs a calculation based on energy usage and
data volume or throughput measurements and returns an ‘energy score’ as an absolute value in bits per
joule. Bits per joule is the standard measurement for EE in telecommunications as defined by the Next
Generation Mobile Networks (NGMN) in [13]. Using a standardised measurement with a straightforward
formula means that equivalent values can also be calculated for network equipment outside the scope of
the Al Engine. To effectively validate the energy savings achieved by the BeGREEN project, the Energy Score
must represent an absolute value of EE as opposed to a measure relative to external factors.

The Energy Score function accepts a JSON payload containing two key fields:

e data_volume: Represents the volume of data transmitted, measured in megabits (Mbits). This can
be a single value or a list of values.

e energy_consumption: Represents the energy consumed during the data transmission, measured in
watt-hours (Wh). This can also be a single value or a list of values.

The Al Engine function calculates the energy score using the formula, where:
e Data volume is converted from megabits to bits by multiplying by 10°.
e Energy consumption is converted from watt-hours to joules by multiplying by 3600.
The Energy Score function output returns both individual energy scores (when multiple values are passed in)

as well as an overall average score for the aggregated data. The function also includes input validation, error
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handling and logging to the Al Engine framework to provide a robust, efficient and scalable solution to EE
calculation in BeGREEN.

The Energy Rating function is also deployed as a serverless function on the Al Engine. The Energy Rating
function is able to provide a relative energy rating (A — E) for any network entity in the BeGREEN ecosystem
based on available historical data (including energy consumption and data throughput/volume
measurements net of retransmissions at layers where this is available). The most efficient 20% of entities are
rated A, the next 20% rated B and so on.

The Energy Rating function also provides a percentile value to give more insight into EE trends in the network.
For example, an energy rating will be displayed as ‘A 99’ or ‘C 43, allowing smaller changes in relative
efficiency to be tracked, which would not be possible with an approach limited to the granularity of a quintile.
As well as the average value over the defined period, the function also provides the current energy rating,
energy rating one hour ago and energy rating one day ago (dependent on data being available). These metrics
are key for identification of the network entities that need to be optimized before activating or applying the
EE algorithms. The historical ratings and precise percentiles of relative performance provide valuable insight
into a network entity’s EE performance.

The Energy Rating function calculates relative energy ratings for network entities based on a file or files
containing performance data, stored in the Al Engine datalake. The Energy Rating function accepts a JSON
payload containing the following fields:

target: list of cells for which to return energy ratings.
o filelist: a list of files that contain the data from which to compute energy ratings.
e bucketname: the S3 bucket in the Al Engine that contains the file(s) in the filelist.

o limit: the number of Result Output Periods (ROPs) to use from the files (the 'limit' most recent ROPs
from the file will be used).

e energyconsumptionfieldname: the data field in the file(s) that contains the energy consumption
information.

e datavolumefieldnames: the data fields in the file(s) that contain the data volume.
o timestampfieldname: the data field in the file(s) that contains the timestamp.

o hours: the number of hours old a pre-existing energy rating calculation can be before it is
automatically recalculated.

e conversionfactor: adapts to the units used in the data volume fields (e.g. if data volumes are
provided in kilobits use conversion factor = 1000 to divide by 1000 to convert to megabits. If provided
in megabits use conversion factor = 1).

e rops_per_hour: The frequency of data collection used in the files in the filelist; e.g., for 15-minute
ROP use 4, for 1-minute ROP use 15.

The function calculates EE ratings (A, B, C, D, E) based on the percentile of the energy score compared to the
overall dataset.

The ratings are calculated as follows:
e A:80-100th percentile
e B: 60-80th percentile

C: 40-60th percentile

D: 20-40th percentile
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Figure 2-3: Energy efficiency in the Intelligence Plane - energy rating function output

e E: 0-20th percentile
An example of the output of the energy rating function is shown Figure 2-3.

This shows the average energy rating and energy score for a cell over a 3-days period together with an energy
rating based on its current consumption and volume and snapshots of its metrics one hour ago and one day
ago. Section 2.3.2 provides a benchmark for the required resources and the delay associated with serving
the energy rating function within the Al Engine.

2.2.2Energy consumption of BeGREEN functions

Predictive models used in telecommunication network management to anticipate future network conditions
and minimize energy consumption can, in fact, become significant contributors to the overall energy usage.
These models can consume substantial computational resources for training, inference, and data movement,
therefore increasing the energy required to operate these networks. These models are used to determine
likely future values for a variable and can leverage vast amounts of data. Both the volume of data that are
processed and the type of predictive model used contribute to the resources consumed.

Previous studies [14] have shown that selectively and frugally processing data can minimize the resource
consumption of models while retaining their predictive accuracy. In addition to general solution, specific
techniques exist for certain model types that can automate the feature selection, such as Recursive Feature
Elimination (RFE) [15] for the XGBOOST model. RFE techniques for linear and Support Vector Machine (SVM)-
type models are also included in many standard Application Programming Interfaces (APIs). Other model
types such as Neural Networks (NNs) or K-Nearest Neighbours can utilize SHapley Additive exPlanation (SHAP)
values to identify the least important features to recursively remove from the model.

These techniques involve an initial overhead in computational resources and energy consumption when first
applied, as they work by repeatedly fitting the model and removing the least important features one at a
time (or in specified batches). However, a model that uses less data will use less computational resources
during retraining of the model and during inference. The reduction in data dimensionality can also contribute
to reducing other aspects of the model contributing to energy utilization, such as data storage, data
movement, memory and 1/0O.

An evaluation of dimensionality reduction techniques was carried out in BeGREEN D4.2 [2], where the
number of input features to a predictive model was limited based on feature importance. Additionally, the
effects of various levels of dimensionality reduction were evaluated. The results indicated that significant
reductions in CPU load and data size could be achieved at the expense of very small reductions in model
accuracy.

Prior literature [16], which relates models to the energy consumption of data centers, identifies the main
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components of energy consumption as the CPU, disk, network and memory. To accurately measure the
energy consumption of training or inference, each of these factors must be considered.

CPU cycles calculation must consider the Thermal Design Power (TDP) of the processor and its clock speed.
For example, for a processor with a stated TDP and clock speed, the calculation of its CPU power consumption

(cpc) is:

oo TDP(W), CPU _cycles _used
3.6%10° CPU _clock _speed(Hz)

(EC-1)

To determine the marginal power consumption (dmpc) of disk usage, it i dependent on the type of disk, the
difference between power consumption of the active and idle states, and the transfer speed of the device.
The calculation is as follows:

dmpc = active pc —idle pc
dmpc . data _volume (EC-2)
3.6*%10° data transfer rate

dpc =

For obtaining the marginal network power consumption (nmpc) it is necessary to estimate the power
consumption of the devices involved in a typical end-to-end transmission of network data, typically a number
of Network Interface Cards (NICs), routers and switches. Additionally, the time taken to transmit the data
must be calculated, so the bandwidth of the network also factors in the calculation:

nmpc = NICs + Routers + Switches
nmpc ,  data _volume (EC-3)
npc = 3
3.6*%10° data transfer rate

For calculating the marginal memory power consumption (mmpc), it is necessary to estimate the idle and
active power consumption of the relevant memory module and its transfer rate. It is also important to
include a factor for how many times data is read from memory during a typical ML model training task. This
varies greatly between different ML techniques such as regression algorithms and NNs but is typically in the
range of 50 to 500 times. To estimate this effect, the data volume is multiplied by 100.

mmpc = active _pc—idle pc

data _volume*100 x mmpc (EC-4)

mpc = 3
data transfer rate 3.6*10

To ensure that the quality of model prediction is maintained, attention must also be paid to quality metrics
such as model accuracy. It may be desirable in some cases to use a more efficient model for some predictions
than a model with the maximum possible accuracy. There are many scenarios in telecommunication network
management where the use of an efficient model that balances speed and accuracy is more beneficial than
the use of the more accurate model. An example would be an anomaly detection system to quickly detect
and flag potential issues without providing highly accurate diagnostics immediately. Load forecasting during
non-peak times when the network has spare capacity can also be done using highly efficient, low accuracy
modelling. High frequency short term predictions, such as frequent adjustment of base station power levels,
can also perform better when using a faster but less accurate model.

The relative contribution of the components of energy usage was assessed on a range of model training tasks.
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Figure 2-4: Energy efficiency in the Intelligence Plane - Energy Consumption Breakdown

Taking a typical example of a model predicting future energy consumption values for a cell, the total energy
consumption was found to come mainly from CPU energy consumption with the other components being
much smaller factors, particularly the energy consumption of disk access and network I/O. Disk access could
be slightly higher depending on memory paging. This can be seen in Figure 2-4.

The implication of this breakdown is that the energy consumption of training a model will be nearly perfectly
linearly correlated with that model’s CPU usage. It also indicates that the CPU cycles used and the
specification of the processor, would be sufficient to generate a useful estimate of the energy costs
associated with training a model, as the contribution of the other factors is extremely small (i.e., < 4%).

2.2.3 Measuring the energy consumption of model training in BeGREEN functions

To validate previous characterization, we measured and estimated the energy consumption of model
training carried out by BeGREEN functions. To this end, a list of parameters relating to a typical O-RAN
deployment and hardware was assembled as listed in Table 2-1.

Table 2-1: Energy Efficiency in the Intelligence Plane - Example System Parameter List
Parameter

CPU TDP

CPU Clock Speed

230W (115W x 2)
2.6 GHz

As analysed in previous section, since the contribution of factors other than CPU to power consumption were
negligible, only the CPU cycles needed to be calculated to obtain a proper estimate of the power
consumption of a model training function. The estimated power could then be obtained by adding
approximately an 4% overhead to the power consumption value calculated from the CPUs. To demonstrate
this, model training functions were tested to find the number of CPU cycles it took to train the model. The
amount of data that was passed into the function was also measured. Using these data, an algorithm was
developed based on the formulae in the previous section that provided the marginal cost in Watt Hours (Wh)
to train each model.

The algorithm is deployed in the Intelligence Plane of BeGREEN as an Energy Measurement serverless
function and is accessible for authors of BeGREEN energy saving functions to measure the energy
consumption of these functions. To provide this information, the function author must supply the CPU cycles
and the data volume used for training the function, together with the system parameters of the execution
environment. This allows BeGREEN to verify its net contribution to EE by evaluating the overhead involved
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in the energy saving process. The minimum data needed to provide an estimate for a function’s energy
consumption are the TDP of the processor, the clock speed of the CPU and the number of CPU cycles
expended in executing the function. A slightly more accurate measurement can be obtained by applying the
formulae in Section 2.2.2 related to disk, network and memory, together with the volume of data that is
being passed to the function.

To obtain an accurate measurement of the actual consumption of the energy saving functions in isolation,
the measurement of CPU cycles must include all CPU cores used in the computation but exclude any other
processes or background services executing on the server. There are many tools that can be used to profile
CPU consumption. Intel VTune [17] works across all major platforms and languages, whereas the ‘perf’ tool
[18] is Linux specific but also works across all languages. Other language specific, and platform agnostic, tools
are also available such as psutil for Python but with adaptations for C++ and Go languages, OSHI for Java, sys-
proctable for Ruby and System Diagnostics for C#. Some of these language specific tools vary in their
capability to measure CPU cycles across multiple cores. If multiple CPUs with differing clock speeds are used
in the execution of the energy saving functions, CPU cycles must be recorded separately for each processor.
Then, multiple calls should be made to the Energy Measurement function, and the results must be
aggregated to get the total energy consumption of the energy saving function.

To validate this approach, a set of models were trained with 600MB of telecom performance data containing
1400 features on a 32 CPU server with 256GB of memory. Additionally, reduced feature sets of 400, 200,
100, 50, 30, 20 and 10 features as described in [1] were considered. The baseline energy consumption of the
server was measured and found to be stable. The models were repeatedly trained for a 30-minute window
each, and the statistics for each model were measured using the ‘perf’ tool in Linux and compared to the
power used by the server, which was separately recorded using a power meter.

The results show that the calculated energy used was overestimated by over 50% for the smallest models
with the fewest features but converged on around a 10% underestimate for the models trained on larger
numbers of features. As the calculated power calculates only the energy consumption of the model training
section of the code, the overestimation is due to overheads from the sections of instantiate code outside the
main model training function in multiple runs of shorter-lived training functions. The short training time of
between 7 and 30 second means that this overhead is a much larger proportion of the total energy
consumption than would be the case in a model training scenario, which would by typical for a live network.
For models whose training ran for over a minute there was a much lower differential between measured and
calculated energy usage.

Models trained in telecommunications functions in live network deployments are typically larger than the
samples used here and contain multiple GBs of data and take hours to train so the convergence of calculated
and measured energy consumption with larger data sets is the best indicator of the accuracy of this method.

Figure 2-5 shows the energy calculated for each model based on measurements of the usage of CPU taken
on the system during execution applied to the system’s parameters (as shown in Table 2-1).

Figure 2-6 shows the percentage error of the energy consumption calculation across the different models,
with different levels of dimensionality reduction, which were executed for these tests.

Selecting a model with lower dimensionality means that there is less energy consumed during the training
of that model. Figure 2-7 indicates how many Watt hours of energy are saved, per training event, by selecting
a dimensionally reduced model, based on the measured energy consumption and small network size used in
these tests. Energy savings in a live network deployment with more typical models used in
telecommunication management functions would be significantly higher.
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Figure 2-5: Energy efficiency in the Intelligence Plane - Calculated vs Measured power consumption
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Figure 2-6: Energy efficiency in the Intelligence Plane - Calculated vs Measured Energy with % Error

Due to the disproportionate overheads of very small models, as described above, the error in the calculated
energy consumption is high for the smaller models in the test. Figure 2-8 shows the close correlation
between CPU utilization measured on the system and the energy consumption measured by the power

meter. This graph also indicates the convergence of the Calculated and Measured lines for the larger, more
CPU-intensive models.
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Figure 2-8: Energy efficiency in the Intelligence Plane - Power vs CPU Utilization

2.2.4Model catalogue and selection function

Selecting the most efficient model to train for a prediction task can save a significant amount of energy over
time in a large network deployment with many autonomous optimization applications running constantly
and periodically retraining As introduced in section 2.1.1.1, this involves the provision of a Selector function
in the Al Engine, designed to automate the selection of the most energy-efficient Al model that meets a
specified accuracy requirement. It operates as part of the model deployment and inference pipeline,
ensuring optimal resource utilization while maintaining performance standards.

To this end, AIA rApps are no longer tied to a specific model or model serving endpoint in Nuclio; instead,
they are associated with an information type, such as 'cell load prediction' or 'cell energy prediction'. When
arequest is received via R1/ICS from a control rApp for a specific information type and accuracy requirement,
the AIA rApp queries the Model Selection function in the Al Engine to determine the most energy-efficient
model to fulfil it. The Model Selection function responds with the endpoint of the selected model, which the
AIA rApp then uses to start serving the model output. This procedure is triggered each time an rApp requests
a model output for the first time, i.e., when a new job subscription is received by the AIA rApp via ICS/R1.
The workflow in Figure 2-9 illustrates these operations.

BeGREEN [SNS-JU-101097083] 28



[

o)
D4.3 —Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane BEGREEN

.|| Model selection Model 1
function I Model catalng enr:lpmnt

aploy model 1
Il Load Predictor (accuracy X, EC XX)

Al Engine Non-RT RIC

Model 2 Cell Load Predictor
endpmnt AlA rApp I Control rApp 1 ‘ l Control rApp 2 ICSIRl DME

eploy model 2
Il Load Predictor (accuracy Y, EC YY)

: Control rApp 1 with accuracy requirements N :

Create Job
| Cell Load Fredlcto; (min. accuracy N)

Notify Job |
Cell Load Predl(tun (min. accuracy N)

| Request EF model credentials (mi;'\. accuracy N) |

|_ Get model information

| Select EF model (min. accuracy N) 0

| Send credentials model 2

loop J |[inference loop]

| Reguest Inference model 2 |

! Model 2 output

| Model 2 output
e ——

~ || Model selection
b function

: Control rApp 2 with accuracy requir P :

| Create Job '
\_Cell Load Predictor (min. accuracy P) |

Notify Job | |
Cell Load Fredlcton (min. accuracy P) 1

i Request EF model credentials (mii'\. accuracy P) i

| _ Get model information i i ! ! | 0 !

| Select EF model (min. accuracy P) i

| Send credentials model 1 i i i ! | i !

loop__/ [inference loop

! | ! | Reguest Inference model 1 |

| Model 1 output

| Model 1 output

| Model catalog | | Model 1 Cell Load Predictor | Control rApp 1 ‘ ‘ Cantrol rApp 2 ‘ IC5/R1 DME
endpoint AlA rApp ——

Model 2
endpoint

Figure 2-9: Energy efficiency in the Intelligence Plane - model selection architecture

The key functionalities of this procedure are described as follows:

1.

Model Selection Based on Accuracy: The function accepts a JSON input containing a
required_accuracy parameter. It queries the MLRun database to retrieve metadata for all registered
models across projects, filtering those that meet or exceed the specified accuracy. The metadata
includes metrics such as r2_score (accuracy) and total_energy_wh (energy consumption).

Energy Efficiency Optimization: From the filtered models, the function selects the one with the
lowest energy consumption. This ensures minimal operational overhead while adhering to the
accuracy constraints, aligning with sustainability goals in cellular network management.

Dynamic Response to Input: The function handles edge cases gracefully, such as invalid JSON input,
missing accuracy parameters, or no models meeting the criteria. It provides informative error
messages and usage guidelines to facilitate integration with other components (e.g., the AlA rApps).

Integration with Non-RT RIC Workflow: The output of the function is a JSON object containing the
selected model’s name, endpoint, project, accuracy, energy consumption, and energy savings
compared to the least efficient viable model that feeds into downstream processes.

By automating model selection with a dual focus on accuracy and EE, this function addresses a key challenge
in Al-driven radio resource control: balancing computational performance with sustainability. Its deployment
within the Non-RT RIC exemplifies how intelligent orchestration can enhance the scalability and efficiency of
cellular networks. The design of the function also highlights the role of metadata (e.g., labels like r2_score
and total_energy_wh) in enabling cross-component interoperability within the O-RAN architecture and
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directly contributing to BeGREEN’s goal of intelligent, efficient radio control. Demonstration and evaluation
of this feature will be included in the PoC1 demo within WPS5.

2.3 Validation of the Intelligence Plane

This section details functional validations and benchmarks of the Intelligence Plane implementation done
through different PoCs and prototypes. First, we benchmark the Al Engine during model training and serving.
Although there is an evident relationship with the hardware capabilities, the analysis provides some relevant
insights regarding the trade-off between energy consumption and performance. We then validate the
automated generation of datasets in the Al Engine datalake using the R1 interface and producer rApps. Next,
we present the integration of the Non-RT and Near-RT RICs. Then, the conflict mitigation performed at the
Near-RT RC is detailed, which manages conflictive Al policies. Finally, the integration of RIS and Intelligence
Plane is described in detail and evaluated.

2.3.1Al Engine Benchmark: training

This section describes the procedure used to characterize the power consumption, the CPU usage and the
performance obtained when training ML models in the Al Engine. Concretely, we characterized several multi-
output classifiers from which we chose the one which is later used to address the energy-efficient 5G carrier
on/off switching in section 3.2. This is aligned with the results obtained in BeGREEN D2.3 [19] (Section 4.8),
which concluded that energy-saving strategies should contemplate QoS aspects, since those can impose
significant constraints on the switch off opportunities.

The multi-output models are trained to output six binary decisions, related to the defined QoS levels. We
compare in total four different models that differ either in the model type or in the number of input features,
n. We begin by comparing two different model types (low-complex and mid-complex), which are trained
with n = 15 input features and three weeks of data, which represent around 400.000 training samples.

The first one is the Ridge classifier®, which solves a closed-form solution using the Normal Equation or an
optimization method like the gradient descent, which typically converges fast as it minimizes a quadratic
function. The second one is the Logistic Regression classifier, which we already used in BeGREEN D4.2 [2] as
a simple output model to decide 5G carrier on/off switching. This latter uses iterative methods like Newton’s
method or the Stochastic Gradient Descent (SDG) method, which minimize the log-loss function, a non-
quadratic function, and requires a higher number of iterations to converge. From a general perspective, the
Ridge Classifier should require less training time, but the Logistic Regression should provide better
performance.

After this first comparison, we reduce the number of input features twice and compare two reduced Logistic
Regression models to see how this affects the training process. The comparisons we present are based on
the following metrics:

e Power consumption: average consumption of the full hardware®.
o Average CPU usage: average usage of the 12 virtual CPUs the hardware is composed of.
e Training accuracy: measured as the F1 score, the precision and the recall obtained.
To extract the power consumption and CPU usage metrics we use some bash commands that are based on

the “powerstat” and “mpstat” linux commands. Those commands allow us to export the results obtained
during the training process into a Comma-Separated Values (CSV) file that we later process using Python.

5 https://scikit-learn.org/stable/modules/generated/sklearn.linear model.RidgeClassifier.html
6 Intel NUC10i7FNH, i7-10710U CPU (12 vcores, up to 4.2GHz), 64 GB RAM
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Figure 2-10: Al Engine Benchmark - Ridge Classifier power consumption (top), and CPU usage (bottom)

The ML models are trained on an MLRun instance in the same server. When the training finishes, MLRun
provides the model performance metrics regarding accuracy. To provide statistical diversity we repeated all
the experiments three times, showing as a result the average and standard deviation obtained across them.

Figure 2-10 and Figure 2-11 show the power consumption (top) and the CPU usage (bottom) for the Ridge
and Logistic Regression classifiers, respectively. As expected, the Ridge classifier converges faster (~ 20s)
than the Logistic Regression classifier (~ 120s), and the impact on the power consumption and CPU usage is
much lower. However, Figure 2-12, which captures the performance obtained for all tested models, shows
that the Ridge classifier is one point below in the obtained precision, four points below in the obtained recall
and three points below in the F1 score.

Since the total energy consumption of the training process for the Logistic Regression classifier was low (50W
on average during 120s, i.e., 1.67 Wh) and it was obtaining better results, we decided to perform a feature
importance analysis to reduce the number of input features to see if the training time could be reduced
without impacting the performance. First, we erased the five less important features from the input set,
leaving a total of ten input features, and then we just left the 6 more important features for the carrier on/off
switching use case.
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Figure 2-11: Al Engine Benchmark - Logistic Regression Classifier power consumption (top), and CPU usage (bottom)
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Figure 2-12: Al Engine Benchmark - Performance metrics evaluation for the different tested models

Figure 2-13 and Figure 2-14 show the power consumption results for the Logistic withn = 10 andn = 6,
respectively. Reducing the number of input features decreases the training time and consequently the power
consumption and the CPU usage increase. Indeed, Figure 2-12 shows that while reducing fromn = 15 to
n = 10 reduces the training time from 120s (1.56Wh) to 90s (1.19 Wh), it has no impact in terms of
performance. Reducing to n = 6 makes the Logistic Regression classifier to lose some accuracy points but
still performs better than the Ridge classifier while reducing training time and power consumption up to 0.53
Wh). Therefore, we decided to use the latter model, i.e., Logistic Regression classifier with n = 6, as the one
used to address the carrier on/off switching that will be evaluated in section 3.2.
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Figure 2-13: Al Engine Benchmark - Logistic Regression Classifier power consumption (n=10)
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Figure 2-14: Al Engine Benchmark - Logistic Regression classifier power consumption (n=6)

Finally, with the selected model, we performed a further test to evaluate whether reducing the CPU
frequency during training could provide any benefit in terms of power consumed. Figure 2-15 and Figure
2-16 show the comparison between 3 GHz (high frequency) and 1 GHz (low frequency). Note that previous

tests were performed using dynamic frequency setting by the powersave CPU governor.
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Figure 2-15: Al Engine Benchmark - Logistic Regression Classifier with n=6 and CPUs at high frequency
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Figure 2-16: Al Engine Benchmark - Logistic Regression Classifier with n=6 and CPUs at low frequency

As expected, we observe that power consumption at low frequency is much lower but extends for a greater
period of time. Therefore, we computed the energy consumption (Wh) according to Equation (2-1) for both
cases:

Econs = (Pavg w) - Ttraining (s)) + 3600s (2-1)

e High frequency: E.pns = (44W - 40s) +3600s = 0.51 Wh
e low frequency: E.pns = (14W - 1255) +3600s =~ 0.48 Wh

Therefore, in terms of total energy consumption there seems to be no benefit from training at low frequency.
However, comparing the power consumed during the training to the baseline consumption of the hardware
leads to higher differences in high frequency case. Considering this delta, the results show that training at a
high frequency doubles the energy consumption compared to the low frequency case. Therefore, when
compared to the baseline consumption of the equipment, low CPU frequency is better in terms of energy
expenditure. This suggest that CPU frequency policies which consider server and training workloads, like the
proposed in section 3.4 for the UPF, could benefit energy savings.

e High frequency: AE.,,s = (26W - 40s) +3600s = 0.29 Wh
e low frequency: AE.,,s = (AW - 125s) +3600s = 0.14 Wh

2.3.2 Al Engine Benchmark: serving

The Al Engine and the Non-RT RIC must ensure that data and ML model outputs are exposed with enough
granularity to implement Non-RT control loops. As was discussed in BeGREEN D4.2 [2], the functions
deployed in the Al Engine can lead to bottlenecks according to the workload in terms of consumer rApps or
control loop intervals. However, note that Nuclio allows serverless deployments on Kubernetes, what will
ensure scalability in production environments consisting of distributed servers. Nevertheless, the provided
benchmark in a single server” highlights some relevant trade-offs of the developed functions.

We first repeated some of the experiments that were provided in BeGREEN D4.2 [2], comparing the
performance of two predictors (energy and load per cell) based on the XGBOOST model. We calculated the
excess delay as the difference between the required period and the measured period, according to the
number of consumers, of jobs and the period.

7 Intel NUC10i7FNH, i7-10710U CPU (12 vcores, up to 4.2GHz), 64 GB RAM
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Figure 2-18: Al Engine Benchmark - Jobs latency with an increasing number of consumers (2 jobs)

As depicted in Figure 2-17 and Figure 2-18, the latency increases with the workload of the inference services
in terms of request per second: i.e., more consumers and/or jobs, and less interval between requests. In
BeGREEN D4.2 [2], we analysed this increase and found that it was caused by the model inference procedures.
For instance, when serving simpler functions, such as the energy score, we did not observe this trade-off.

In the case of the energy rating function, since it requires to gather historical data from the datalake, it can
lead to longer latencies which may impact excess delay. We characterized also its performance in the Al
Engine according to the number of consumers. In the first experiment, the number of cells was fixed to 5
and the job period to 10 seconds, while we considered different ROP limits. Figure 2-19 shows how the excess
delay significantly increases with the number of consumers, especially with high limit values since the
number of considered ROPs is higher. Recall that the considered dataset contains data with a granularity of
15 minutes; therefore, the 600 limit corresponds to almost one week of data.

We also evaluated the impact of increasing the number of cells with a fixed limit ROP (240), number of
consumers (10) and job period (10 seconds). As depicted in Figure 2-20, while latency seems to increase with
the number of cells, the increment is marginal compared to the effect of increasing the limit parameter.
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Figure 2-20: Al Engine Benchmark - Energy rating latency with an increasing number of cells

We next characterize the impact of model serving on the resource consumption of the Al Engine host. This
helps to fully analyse the implications of the utilization of Al to enhance energy efficiency and to understand
the experimented bottlenecks in the server. We fixed the job period to 1 second and the number of jobs per
consumer to 2 (load and energy predictors), and characterized the delay, the power consumption and the
CPU utilisation of the Al Engine according to the number of consumer rApps. Figure 2-21 illustrates the
results with the default CPU governor (i.e., powersave). Recall that the Al Engine server begins to act as a
bottleneck when implementing 1-second control loops with 20 consumers, as CPU usage reaches its limit.
Consequently, with 40 consumers, delays further increase. The power consumption of the server also
stabilizes near its TDP limits.
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Figure 2-21: Al Engine Benchmark — Resource utilisation during inference with an increasing number of consumers

(variable CPU frequency)
Figure 2-22 shows the equivalent results when fixing the CPU frequency to a low value (i.e., 1GHz). In this
case, workload reaches server’s CPU utilisation limit after 5 consumers, leading to high delays in the case of
10, 20 and 40 consumers. On the contrary, the power consumption remains stable and very low due to the
low CPU frequency. Conversely, Figure 2-23 illustrates results when using a fixed higher CPU frequency (i.e.,
3 GHz). Notably, delay performance is similar to the CPU free mode case depicted in Figure 2-21, but power
consumption gets decreased by avoiding CPU frequency peaks (up to 4.7 GHz in this server). As described in
section 2.3.1, these results suggest potential benefits of CPU frequency management policies for MLOps,
following a similar approach to that outlined in section 3.4 for servers hosting the UPF. Additionally, in
production deployments, the serverless Kubernetes-based architecture of the Al Engine could be leveraged
to deploy multiple function replicas on servers operating at lower CPU frequencies, potentially increasing
the EE of the system.

Finally, we also analysed the impact of the number of input features on the performance of the Logistic
Regression classifier described in section 2.3.1. Notably, as shown in Figure 2-24, and compared to previous
results with xgboost-based predictors and the energy rating, the latency performance remains very low
independently of the number of consumers. Accordingly, same occurs with power consumption and CPU
usage, confirming the absence of bottlenecks while serving these models. Results also indicate that the
number of input features, i.e., the model complexity, does not seem to impact the serving time or the
consumption of resources during inference. This confirms that model selection function, introduced in
section 2.2.4, should mainly focus on the trade-off between the resources consumed during training
operations and the accuracy metrics of the models.
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Figure 2-22: Al Engine Benchmark — Resource utilisation during inference with an increasing number of consumers
(low CPU frequency)
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Figure 2-23: Al Engine Benchmark — Resource utilisation during inference with an increasing number of consumers
(high CPU frequency)
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Figure 2-24: Al Engine Benchmark — Performance of classifiers during inference according to the number of
consumers and input features

2.3.3 Dataset generation

To automate the generation of datasets according to exposed network KPls, we have developed a producer
rApp which enables KPI collection, processing and uploading to the Al Engine datalake, which is based on
Minio. The creation of dataset jobs leverages the producer-consumer paradigm enabled by the R1 interface,
which allows several consumers to initiate parallel dataset jobs with different configurations for data
retrieval and storage. Dataset jobs can be generated manually through the Non-RT RIC API (e.g., by Al
developers) or automatically by rApps. For instance, AIA rApps may initiate a dataset job for enabling
retraining procedures, for instance after monitoring performance degradation or according to a policy aiming
at using updated data.

Figure 2-25 shows the definition of the dataset information type in R1/ICS, which is then served by the
“Dataset Producer rApp”. As illustrated by the parameters, the job definition allows to configure the duration
of the job and the period of the data, which is used when generating the secondary jobs required to obtain
the data. These jobs are defined in the data_description field, providing a list of information types and the
parameters required to create them according to their definition in R1/ICS.

The gathered data is stored in CSV format with timestamps. CSV files of maximum size chunk_size rows are
generated and uploaded during data obtention to avoid the generation of huge files which would complicate
the storage and uploading procedure. Bucket and file prefix names are used to identify the dataset. The latter
is combined with a timestamp to identify the different data segments or CSVs of a campaign.

Figure 2-26 illustrates an exemplar workflow, involving the rApp exposing KPMs from the near-RT RIC. As
shown in the workflow, the dataset rApp manages the life cycle of secondary jobs through R1/ICS.

8 https://min.io
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Curl

curl -X 'GET' \
"hittp: ff192.168.48. 51: 30088, info-typettype_id-dataset' \

=H 'accept: application/json’

Request URL

hitp://192.168.48.51: 36000/ info-type?type_id=dataset

Server response

Code

200

Details

Response body

"info job data schema™: {

"job_definition": {
"period_secs": "period in seconds of data retrieval (int)",
"limit secs™: "duration of the job in seconds (int)",
"chunk_size™: "maximm size in rows of the uploaded CSWs",
"data_description™: [
{

"info_type™: "Information Type defined in R1/ICS",
"job description™: "Parameters requiered by the information type according to its ICS definition to generate a job™

])
"minio_credemntials™: {
"wrl”: "Minio wrl (string)",

"access_key": "Access key (string)”,

"secret_key": "Secret key (string)”,

"bucket_name": "Minio bucket name. Existent or new. (string)”,

"file prefix": "Prefix (including folder) to be used to generate CSV file names"

"Notifies finmalization of the dataset job"

"info_type information™: {

"description™: "Minio-based dataset generation according to metrics being exposed in R1/ICS™

Figure 2-25: Dataset generation service - Dataset information type
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Figure 2-26: Dataset generation service - Exemplar workflow
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Curl

curl -X "GET" \
"http://192.168.40.51:30000/jobs" \

-H 'accept: application/json'

Request URL

http://192.168.40.51:30000/jobs

Server response

Code Details

Ly Response body

"NONRTRIC-dataset-1743086643",

"dataset-producer-rapp+NONRTRIC-dataset-1743086643+kafka_kpm cell_drax"

1

Figure 2-27: Dataset generation service - Jobs generated in the ICS/R1 after requesting the dataset job
curl

curl -X "GET" \
"http://192.168.40.51:30000/jobs?jobid=NONRTRIC-dataset-1743086643" \
-H 'accept: application/json’

Request URL

http://192.168.40.51:30000/jobs?jobid=NONRTRIC-dataset-1743086643

Server response

Code Details

= Response body

info_type_:
"job_owne NONRTRIC",
"job_definition": {
“chunk_size": »
"data_description™: [
"info_type": "kafka_kpm cell_drax",
"job_description”: {
"metrics”: [
"PEE.AvgPower",
"PEE.Energy",
"RRU.PrbTotD1",
"RRU.PrbTotul",
"RRU.PrbAvailDl",
"DRB.UEThpD1",
"DRB.UEThpUl",
"DRB.MeanActivele"

3
"cell_ids": [
"4886716420-001-01",
"4886716421-001-01",
"4886716422-001-01",
"4886716417-001-01",
"4886716418-001-01",
"4886716419-001-01"

1,
"limit_secs": s
"minio_credentials": {

"url™: "192.168.40.89:36080",

"access_key": "WOmDkvOriIVILXk3",
ZACcpOk1wX88WxnTE66V7cVVwdhpDwLT",
"dataset-ric-march2s5",
"test4/kpmdrax"

b

"period_secs":
1
"job_result_uri": "http://192.168.40.51:30000/datadelivery"”,
"status_notification_uri”: “http://192.168.40.51:30000/status"

}

Figure 2-28: Dataset generation service - Dataset job
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This workflow is initiated by creating a job through the non-RT RIC API, which contains the parameters
depicted in Figure 2-28. As mentioned, the data_description field contains the information needed to create
the secondary job to gather the KPMs, of type kafka_kpm_cell_drax, provided by the specific rApp. Figure
2-27 shows both active jobs in the R1/ICS DME service.

Figure 2-29 and Figure 2-30 depict the generated bucket and the uploaded CSV files in the Minio GUI, while
Figure 2-31 shows an example of the content of a CSV with the gathered metrics and correspondent
timestamps and identifiers.

EISI:NSOLE Buckets

Buckets Search Buckets Q

B Identity
dataset-ric-march25
Created: 2025-03-26T18:02:33Z Access: Ry

E [¢] Usage @ Objects
887w 25

& Monitoring

Aatacate

Figure 2-29: Dataset generation service - Minio buckets

= dataset-ric-march25

4 Name
@ kpmdrax_20250327_145400.csv
@ kpmdrax_20250327_150400.csv
@ kpmdrax_20250327_151401.csv
@ kprdrax_20250327_152402.csv
@ kpmdrax_20250327_153403.csv
@ kpmdrax_20250327_154403.csv
@ kpmdrax_20250327_155404.csv
@ kpmdrax_20250327_160405.csv
@ kpmdrax_20250327_161405.csv
@ kpmdrax_20250327_162406.csv
@ kpmdrax_20250327_163407.csv

@ kpmdrax_20250327_164407.csv

Figure 2-30: Dataset generation service - Minio CSVs
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1 timestamp id kafka_kpm_cell_drax-PEE.AvgPower kafka_kpm_cell_drax-PEE.Energy kafka_kpm_cell_drax-RRU.PrbTotDl kafka_kpm_cell_drax-DRB.UEThpDl kafka_kpm_cell_drax-DRB.MeanActivele
2 | 27/03/202516:34:12 4886716420-001-01 44.0075 0.324309 7 25456 4
3 | 27/03/202516:34.12 4886716421-001-01 58.2665 0.451822 12 4620.8 7
4 | 27/03/202516:34:12 4886716422-001-01 35.2775 0.325919 5 544.8 1
5 | 27/03/202516:34:12 4886716417-001-01 110.084 D.646765 30 44576 7
6 | 27/03/202516:34.12 4886716418-001-01 28.4575 0.180224 2 672 1
T | 27/03/202516:34:12 4886716419-001-01 23.6375 0.150426 o o 0
8 | 27/03/202516:34:17 4886716420-001-01 49.5365 0.324372 k) 2418.4 4
9 | 27/03/2025 16:34:17 4886716421-001-01 64.0865 0.45202 15 4967.2 7
10 | 27/03/202516:34:17 4886716422-001-01 B4.0865 0.325982 & 548.4 1
11| 27/03/2025 16:34.17 4886716417-001-01 135.984 0.646949 33 4228 7
12 | 27/03/2025 16:34:17 4886716418-001-01 29.4575 0.180265 2 576.8 1
13 | 27/03/2025 16:34:17 4886716419-001-01 23.6375 0.150458 ] o 0
14 | 27/03/2025 16:34.22 4886716420-001-01 66.9965 0.324447 16 2179.2 4
15 | 27r03/202516:34:22 4886716421-001-01 89.9855 0.452121 17 4500 7
16 | 27/03/2025 16:34:22 4886716422-001-01 44.0075 0.326042 14 498.4 1
17 | 27/03/2025 16:34:22 4886716417-001-01 161.572 0.647135 41 4108 7
18 | 27/03/202516:34:22 4886716418-001-01 29.4575 0.180306 2 519.2 1
19 | 27/03/2025 16:34.22 4886716419-001-01 23.6375 0.150492 o o 0
0| ITININIRARIAIT ARRRTIRAINANT_NT RR GORR N I745R4 14 MRIR a

Figure 2-31: Dataset generation service - Example of generated CSV

Once finalized (according to the parameter limit_secs), the dataset Producer rApp send a notification to the
consumer (the non-RT RIC API in the example), stops the secondary jobs (KPM in the example) and waits for
the job deletion by the consumer.

This service is being exploited to generate the required datasets for PoC1 demonstration, which will be
provided in BeGREEN D4.4.

2.3.4RICs integration

The baseline functionalities of BeGREEN’s Non-RT RIC, as summarized in Figure 2-32, were presented in
BeGREEN D4.2 [2]: rApp life cycle management (LCM), Data Management and Exposure (DME) through
R1/ICS, rApps as data produces (including Assist rApps exposing the Al Engine) and rApp as data consumers
(including RAN control rApps). In this deliverable it’s reported the integration of the Non-RT and Near-RT
RICs, which required two main functions: Near-RT RIC registration and Al policy management.
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[=
rm

BeGREEN's Non-RT RIC G @ Information Coordination Service (ICS)/R1
R |m JICS-status Status

AP of BeGREEN's Non-RT RIC

Contact Miguel Catalan ICS."R1: Info Types

|m /info-type GetProducer Info Type

|m /info-type PostProducer Info Type

l@ /info-type Delete Producer Info Type

|m /info_type GetConsumer info Types
ICS/R1: Producer rApps

|m fproducers GetFroducers

l@ /producers Delete Producer

|m fproducer-status Get Producer Status

|m fproducer-jobs Get Producer Jobs

|m fproducer-data-info GetProducer Data Info
ICS/R1: Consumer Jobs

|m /jobs Get Jobs

|m /jobs Post dob

l@ /jobs Delete Job

|m /jobs-status GetJobs Status

|m /status Callback Status

Figure 2-32: Validation of the Intelligence Plane - BeGREEN SMO and Non-RT RIC REST API - initial validation [1]

rApps LCM
|m /pods List Pads
|m /pods Deploy Rapp
lm /pods/{pod_name} Delete Pod
Near-RT RICs
|m fnearRT-RIC GetMeanrt Rics
|m /nearRT-RIC Register Mear Rt

lm fmearRT-RIC/{nearrt_ric_name} Delete Neart Ric

A1 Policy Management

| m fpolicy_type/{nrt_ric_name} Get Policy Type

| m fpolicy_type/{nrt_ric_name} Create Policy Type

lm fpolicy_type/{nrt_ric_name}/{policytype id} Delete Palicy Type
| m fpolicy_instance Get Policy Instance

|m fpolicy_instance Create Policy Instance
lm fpolicy_instance Get Policy Instance

The first function allows to register the Near-RT RIC and specify the communication protocols. In the case of
dRAX, Kafka is used and therefore, as depicted in Figure 2-33, the required topics to subscribe to KPM
statistics and to send A1 policies are defined.

Request URL

http://192.168.408.51:30080/nearRT-RIC

Server response

Code Details

200
Response body

"id": 1,

"al_protocol"”: "KAFKA",

"ol_protocol": "KAFKA",

"al_topics™: "accelleran.drax.acc.al.policy",
"ol_topics™: "accelleran.drax.acc.kpm_stats",

"nmonrt_ric_id": 1,
"friendly name": "drax",
"ip": "18.0.116.18",
"port™: b

"xapps”: [],
"ric_type™: "dRAX"

Figure 2-33: Validation of the Intelligence Plane - Near-RT RIC registration
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Request URL

http:/f192.168.46.51:30080/policy instance

Server response

Code Details

202
Response body

"policy data™: {
"scope”™: {
"cel1TdList™: [
{
"plmnId™: {
"mcc™: "eal”,
"mnc”: "a1”
s
"cxd": {
"ncI™:

y
1

1

Is
"esObjectives™: {

"esPercentage”:
1

I

policyPrio™:

"id": 1,

"policy_id": "es_begreen”,
"policy_type_id":
"nearrt_ric_id™:

Figure 2-34: Validation of the Intelligence Plane — Energy Saving A1l policy instance

The Al policy management functions deal with the registration of Al policy types and with the generation
of Al policy instances. While the registration of Al policy types is usually done manually, Al policy instances
are generated and managed by the control rApps. In BeGREEN we focused on the implementation of the
Energy Saving policy defined in BeGREEN D4.2 [2]. The policy extends the energy saving policy of O-RAN by
introducing the Energy Score objective and the Policy Priority field. The schema of the policy, which is used
to validate outgoing (Non-RT RIC) and incoming policy instances (Near-RT RIC), can be found in the Annex I.
Figure 2-34 shows an example of an Energy Saving policy instance sent to a specific cell.

Regarding the collection of KPMs, the KPM producer rApp gathers this data from the dRAX Kafka Bus,
exposing available metrics to any rApp requiring them. Figure 2-35 shows an example of the monitored cells
and metrics during experiments.

Finally, we have also implemented the Energy Rating Assist rApp, being used to expose the energy rating
function hosted in the Al Engine to other rApps. Figure 2-36 depicts the data model of the energy rating
information type, which expects as inputs the list of cells, the period between ratings and the historical limit
of period to be considered to compute the rating among cells. The output is generated by the energy rating
function, as was defined in 2.2.1.
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Request URL

http://192.168.40 .51 : 36888/ producer -data- info2producerid=kafka-kpm-cell -drax-producer

Server response

Code Details

200 Response body

L3

“cell_ids": [
4886716417 -861-01",
"A886716418-881-81",
“48E6716419-801-01",
"48B6716420-001-81",

'J' “4886716421-081-01",

- "4BB6T716422-881-81"

"timestamp™,
"cellid”,
"RRU.PrbTotD1"™,

7 .PrbTotll",
"RRU.PrbAvailDl",
"RREU.PrbAvailll”,
"RRU.PrblUsedDl"”,
“RRU.PrbUsedUl”™,
"DRE.UEThpD1" ,
"DRB.UEThpU1",
"DRB.MeanActivele”,
"PEE.AvgPower",
“PEE.Energy"”,

Figure 2-35: Validation of the Intelligence Plane — KPM producer rApp

Request URL

http:/f192.168.48.51: 36008/ info-typeiype_id=energy_rating

Server response

Code Details

200
Response body

i
"info_job_data_schema®™: {
"job_definition™: {
"cell_ids": "list of cells ids (list of str)”,
"period™: "frequency of the predictions im seconds (imt)",
"period 1imit™: "limits the data being considered in the calculation™
.

K]
"job_data™: {

"energy_ratings": "list of energy ratings of the cells™

]_
1
Iy
"info_type_information™: {
"description™: "Energy rating of the cells in the list"
].

H

Figure 2-36: Validation of the Intelligence Plane — Energy Rating Assist rApp

2.3.5 Conflict mitigation

This section describes the validation of conflict mitigation within the Intelligence Plane scope. Figure 2-37
illustrates the dRAX conflict mitigation dashboard, which integrates the Al policies received from the Non-
Real-Time RIC. In the upper section, the dashboard displays the Al policies applied to the system, detailing
the scope of affected cells, objectives, and policy priorities, as outlined in BeGREEN D4.2 [2] and shown in

Figure 2-38.
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Figure 2-37: Conflict mitigation — Near-RT RIC Grafana dashboard - General Dashboard

v Al Policies

Time + Type Objective Priority Resources

2025-04-08 23:27:35 EnergySavings 100 10 Cell1

Figure 2-38: Conflict mitigation — Near-RT RIC Grafana dashboard - A1l policies section

The next section of the dashboard presents a comparison between the number of actual conflicts and the
avoided conflicts, along with the timestamps of their occurrence. This is detailed in Figure 2-39. Further
below, the conflict guidance messages are detailed, indicating whether a conflict was detected and if it was
successfully mitigated. The bottom section of the dashboard displays network performance metrics, as
described in BeGREEN D4.2 [2]. These include general KPIs per cell, such as energy savings, power
consumption or the energy score, as depicted in Figure 2-40.
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~ Conflict Management

Avoided Conflicts

2864

Real Conflicts

2025-04-09 07:40:10

ANAE NA AR ATAMNAN

Time +

2025-04-09 07:59:53

2025-04-09 07:59:43

ANIE_NA_NG NT-E0Q-22

Avoided Conflicts

01:00 03:00 04:00

== avoided_conflict.count

Real Conflicts

== real_conflict.count

Action TargetxApp Resource

restrict xapp-handover-manager Cell 1
restrict xapp-handover-manager Cell 1

NPT P T AR Mala

FERRE ) PR S

description
Handover Conflict for UE 16 to Cell 3 Conflict Avoided

Handover Conflict for UE 16 to Cell 3 Conflict Avoided

Uandrunr Canflict far LIE 18 $a Call 2 Canflict Aunidad

Figure 2-39: Conflict mitigation — Near-RT RIC Grafana dashboard - Conflict Management Section

General KPMs per Cell

PCI Cell Stat

Tx Power [dBr Actual PC [W 57 Baseline PC [V Energy Score [ DL Thr [Mbp:

0 12 75.3 84; 0 0 kbfs
35 .3 75.3 28.4 Mb/s

35 65. 75.3 34 11.3 Mb/s

35 .3 E 3 13.2 Mb/s

ki 3 .3 % 08 4.05 Mb/s

35 .3 .3 % 5 5.66 Mb/s

62.6 Mb/s

UL Thr [Mbps
0 kb/s

28.5 Mb/s

1.3 Mb/s

1 b/s

4.07 Mb/s

5.69 Mb/s

62.9 Mb/s

Figure 2-40: Conflict mitigation — Near-RT RIC Grafana dashboard - General KPI per cell section.

For validation, we used the scenario described in BeGREEN 2.2 [20] and depicted in Figure 2-41, where six
cells serve 20 UEs. The Non-RT RIC applies an energy efficiency policy of 100% to four cells (Cell 1, Cell 3, Cell
4, and Cell 5), reverting to 0% after two minutes. This transition is intentionally designed to trigger conflicts
between the Energy Savings xApp and the Smart Handover xApp. To assess the effectiveness of the Conflict
Manager, a set of measurements was conducted without the system activated, followed by another set with
the Conflict Manager enabled, allowing for a direct comparison of its impact on conflict resolution.
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Cells & UEs

Figure 2-41: Conflict mitigation — Emulated scenario based on Adastral Park deployment

The Energy Saving xApp, upon receiving a policy of 100% of energy savings, emits a restriction message to
the Smart Handover (SH) xApp to indicate that these resources (cells) are restricted. Similarly, when a policy
of 0% energy savings arrives, the Energy Saving xApp issues an unrestricted message to the affected cells
every time that the cell is being turned on. The restricted/unrestricted messages are within the authority of
the xApps, following the internal policies of the Policy Handler. The target xApp must process these messages
and implement a logic to handle the restriction accordingly. In this case, the SH xApp, after deciding which
users should be handed over, double-checks the restricted cells. If the Conflict Management system is not in
place, it proceeds as usual and issues the handover command. However, if the Conflict Manager is active,
the command is not issued to the RAN. Additionally, if a resource is restricted, the SH xApp sends a conflict
detected message to the conflict detection system. When the Conflict Manager is in place, this message is
labelled as “Conflict Avoided”; otherwise, it is marked as “Conflict Not Avoided”, as shown in Figure 2-42.

+ Al Palicles

Figure 2-42: Conflict Mitigation - Example of conflict detection and avoidance
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Avoided Confilcts

Figure 2-43: Conflict Mitigation — Example of application and impact on energy efficiency

2.3.6RIS validation

As discussed in section 2.1.4, besides the opportunities brought by smart surfaces in communication systems,
RIS have also emerged as a promising ISAC building block for next-generation indoor positioning systems.
Awareness of UE location and mobility, allows for a considerably more effective deployment of these RAN
energy-saving strategies, culminating in reduced transmission overhead and optimized power allocation. For
example, ISAC positioning solutions can enable a 50% reduction in beam measurements for energy-efficient
beam management and facilitate decreased Channel State Information (CSI) reporting, which conserves
power system-wide.

Current indoor positioning solutions using smart surfaces estimate user locations by dynamically probing
different reflection configurations from a precomputed/pre-calibrated codebook, searching for
configurations that maximize the gain of the received communication signal [21][22]. However, current
approaches face several critical challenges that hinder their performance and scalability such as i) reduced
resolution because of the space constraints and sub-6GHz wavelength, ii) low-gain changes due to the
predominance of the direct path, and iii) phase misalignment because of the interferences that may be
created at the receiver between the reflected signal and the direct path.

To showcase the integration of RIS with the BeGREEN Intelligence Plane Architecture, we present here an
RIS-enabled ISAC solution called “Echoes” that addresses the previous challenges. Echoes is an indoor
location system that leverages the reconfiguration capabilities of smart surfaces as well as the flexibility of
future mobile systems based on O-RAN architecture, such as the BeGREEN architecture. In this sense, Echoes
is able to provide the position of one (or more) UEs connected to a gNB (in our case, a 5G small cell) with the
help of a RIS in an indoors scenario in the sub-6GHz band, where the RIS gain is low, and the direct path is
strong.

To do so, Echoes infers the received signal phase solely from power measurements of reference signals used
to measure the uplink channel (more precisely using the metric L1M-UL-SRS-RSRP available from the E2SM-
KPM). Echoes achieves this by exploiting an inherent property of RIS: steering configurations are not singular,
and introducing a constant phase offset to all elements achieves the same intended reflection direction but

BeGREEN [SNS-JU-101097083] 50



[
O
D4.3 — Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane BEGREEN

with a different reflected phase. In this line, Echoes combines the sensed direction of a user with the angle-
of-arrival (AoA) estimation to estimate the position of a user in a sensing area.

2.3.6.1 System Model

Echoes employs a model-based approach for indoor localization, leveraging the combined capabilities of a
small cell and a RIS to estimate the position of users within a sensing area. As depicted in Figure 2-44, we
consider a user (TX) within the sensing area along the direction (8%,p?) with respect to the RIS reference.
Also, the same user is oriented horizontally with an angle, G)ﬁ, and vertically with an angle, ©7, from the
small cell receiving antenna array.

To know how to configure the smart surface, we can derive the optimal phase shifts that the unit cells of a
smart survey should apply to reflect an incoming signal from (6;,¢;)towards (6,.,¢,-) by compensating their
phase difference. This can be done by modelling the smart surface configuration with its corresponding
steering vector model, which can be summarized as:

0, = arccos(cosf; — cosb,.) (2-2)
@, = arcsin(sing; — sing,) (2-3)

To navigate the possible combinations of unit cells’ phase shift configurations, it is a common practice to
compute a configuration codebook, which is a set C = {Ci}, where |C| = K. This configuration codebook
consists of precomputed phase shifts configurations that allow steering an incident wave (6;,¢;) towards a
specific direction (6,.,¢,-). Codebook configurations C;, are generated by discretizing a range of values for 8,,
and ¢,,. Please note that the unit cell configurations are not singular, so if we apply the same phase offset
P, to all cells, we still maximize the power of the reflected signal, but we are changing its phase.

Echoes periodically probes all the configurations C;, of the smart surface’s codebook using a finite set of W
offset values for each configuration. Since, in mobile networks, users periodically transmit reference signals
in the uplink, the network constantly measures the received power per receiving antenna to estimate the
quality of the channel. In 5G-NR, UEs periodically transmit the Uplink Sounding Reference Signal (UL SRS) on
the uplink, allowing the serving gNB to estimate the quality of the channel at different frequencies. UL SRS
are periodically transmitted as often as every 2nd subframe (2 ms) or as infrequent as every 16th frame (160
ms). The UL SRS are transmitted on the last symbol of the subframe.

o

,.
X
.

Py
ey
D

Figure 2-44: RIS Validation - Echoes Scenario
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Based on the received power measurements from the UL SRS, the serving gNB schedules uplink transmissions
on resource blocks of good quality. O-RAN supports monitoring the values of the received power of the UL
SRS [23][24], measuring them periodically for the different UEs and antennas in the serving gNB.

Echoes uses these measurements to estimate the position of a user in three steps:

e Step 1: The first step is required to calculate the direction of the receiver from the RIS point of
reference (6%,pR) To do so, Echoes searches for the set of configurations C* = {C;, (¥J")} that
maximizes the RSRP in each antenna m of the small cell. Afterwards, the M measurements using (2-2)
and (2-3) are averaged to estimate (85, @R). We assume the angle RIS —gNB (8%, ¢F) is known.

e Step 2: The second step relies in the concept that the difference between the estimated offset values
that maximize the RSRP in each antenna pair m and m’ (with the best Cy), is approximately the phase
difference of a signal arriving to m and m’. Echoes exploits this observation to predict the AoA
between the small cell and the user, and obtain ® and 0, using:

4Sy, — LS., -
® = arcsin (u> (2-4)

T

(2-4) is based on the fact that a wave traveling an extra distance d changes its phase by an amount
y) N . . -
AY =27 2 which is equal to the phase difference between the signal s arriving at antenna m, and

the signal s arriving at the antenna m’, i.e., Ap = £s,, — £s,,7. Echoes calculate this phase
differences by adjusting the offset y,of the best Cj, to maximize a fitted sinusoidal function. The
offset 1) that maximizes the RSRP value in that function, will align the phase of the reflected wave
with the phase of the direct wave, i.e.:

1/’6” - l/)(7)n, = tle(u, Sm) - l/)d(ui Sm’) + l/)(sm) - l/)(Sm'), (2'5)

where Y ,4(W, Si) — Ya(u, s,,7) is the phase difference of the signal s arriving at antenna m and m’
respectively — which we can use directly to compute (2-4) —and Y (s,;,) — P(s,,,7) is the difference
between the phase alteration induced by the multi-path effect. Here we assume that the direct path
between the TX and the RX dominates any multi-path contribution and that to reduce the effect of

the multi path, we compute multiple estimations of Yg* — 1/)6”’.

e Step 3: Once these angles have been calculated (0%, %) from Step 2 and (6%,¢F) from Step 1,
Echoes geometrically locates the user within the sensing area, searching the best position (x,y,z) that
minimizes the sum of the mean squared error |e|? of all the angle estimations. To do so, Echoes
follows an optimization problem where all solutions lie in the Euclidean space. Since |e|?is
continuous and convex in the sensing area, it can be solved using numerical methods.

2.3.6.2 O-RAN Integration

Echoes considers an O-RAN enabled indoor scenario that consists of a gNB (small cell) covering the desired
sensing area and a RIS that allows for the estimation of the users’ positions. To integrate the RIS into the
BeGREEN architecture, we follow the approach described in BeGREEN D4.2 [2] and D3.3 [10], as illustrated
in Figure 2-45.

First, we consider an external application that requires user location to be deployed in SMO (e.g., as an rApp)
or outside of the RAN architecture. That positioning application interacts with the Echoes xApp, which is
deployed in the near-RT RIC and implements the core functionalities of Echoes as described above The
Echoes xApp performs the following functions: i) receiving LLM-UL-SRS-RSRP measurements from each small
cell antenna via the E2 interface, ii) reconfiguring the smart surface with a given configuration, and iii)
estimating user positions once Echoes has collected all the necessary measurements.
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Figure 2-45: RIS validation - Echoes’ O-RAN architecture integration and intuitive description

For the use case of Echoes there is not direct RIS control from the non-RT RIC or the near-RT RIC, meaning
that although defined by the BeGREEN architecture, O1+ and E2+ are not used. Instead, the control is
performed in-site through the gNB (small cell). The small cell, which may be deployed in edge O-Cloud
platform is connected to the RIS through the F1-x interface [25] (a wired connection, such as an Ethernet or
USB cable). Within the small cell, there is deployed a dApp [26] that enables the reconfiguration of the smart
surface locally according to a predefined codebook configuration and offset Cy, ().

To describe the Echoes positioning procedure, Figure 2-46 depicts Echoes operational workflow, which
consists of the following four phases: 1) calling the Echoes in which the xApp receives a location subscription
request, 2) listening to the Echoes in which the xApp subscribes to the power measurements of the uplink
reference signal periodically sent from a user of the small cell, 3) tuning the Echoes in which the xApp
reconfigures the smart surface via the dApp, and 4) grasping the Echoes in which the xApp runs the
optimization algorithm to locate a user. In the following we detail each step:

e (Calling the Echoes: Echoes’ workflow starts when the xApp receives a location subscription request
from the external application or rApp whose objective is to locate a user within the sensing area.
The application may send a positioning service request using the Al interface.

e Listening to the Echoes: Echoes’s xApp subscribes to the periodic power level measurements of UL
SRS per receiving antenna measured from the target UE. This measurement is available in the E2
interface through the E2SM-KPM [27]. Therefore, Echoes uses the E2 interface to request the small
cell the periodic metric reports of this metric with a Report Subscription Request, which the small
surface will provide in the form of Report Indications.

e Tuning the Echoes: Echoes’ core location estimation procedure is based on iteratively reconfiguring
a smart surface according to an algorithm implementing Steps 1 and 2 as described above, while
compiling all the necessary power measurements to infer the position of a user within the sensing
area. To reconfigure the smart surface, Echoes’ xApp uses the proxy-like Echoes dApp co-located
with the small cell. The dApp locally controls the smart surface at site, reconfiguring all its elements
through the F1-x interface [28]. Echoes sends to the dApp the index k of a codebook configuration
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Figure 2-46: RIS validation - Echoes workflow

C, (o) and an offset value Y, to be applied. The interface between Echoes’s xApp and the dApp
uses the standard E2 interface leveraging the E2AP sets of predefined procedures and services that
enable the control communication. Over E2AP, Echoes expands E2SM enabling two smart surface-
specific service models, E2SM-SSC and E2SM-SSM, which were introduced in BeGREEN D4.2 [2] and
D3.3 [10]. On one hand, E2SM-SSC allows for setting a given codebook configuration in the smart
surface specifying azimuth, elevation and offset, i.e., C;, (). On the other, E2SM-SSM supports the
reporting of the status of the RIS, all supported codebook configurations and the current codebook
setting currently configured.

e Grasping the Echoes: Once Echoes has received all the necessary power level measurements, Echoes
estimates the position of a user according to above description. Echoes procedure runs periodically
to progressively improve the sensed positions, periodically sending the obtained position
estimations to the subscribed application.

2.3.6.3 Echoes Results

To assess Echoes performance realistically, we have established an experimental testbed. Figure 2-47-a
illustrates the indoor testbed schematically, while Figure 2-47b illustrates a real deployment.

The TX and RX were developed using two USRPs B210 devices operating with srsRAN [29]. The TX
communication stack executes on a desktop PC, while the RX’s Distributed Unit (DU) and Central Unit (CU)
run on the O-cloud edge server. Both RF front-ends operate at 5.3 GHz (wavelength A = 5.65 cm). The RX
uses two omnidirectional low-gain antennas spaced A/2 apart, whereas the TX employs directional horn
antennas. These horns were chosen to minimize scatterers in the testbed and ensure experimental
consistency and reproducibility. The O-cloud server also hosts the O-RAN SC Near-RT RIC (i-release) [30],
where Echoes operates as an xApp. Echoes gather uplink power measurements per antenna from the RX.
The server connects to the smart surface via a USB interface (acting as the F1-x interface) and runs a dApp
to manage codebooks and surface configurations.
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Figure 2-47: RIS validation - lllustrations for the, a) testbed scheme design, and b) real deployment

The smart surface is strategically positioned near the front wall to maximize spatial coverage for user
localization. The RX (small cell) is placed at the opposite end of the room, aligned centrally with the surface
to ensure broad coverage. The TX is situated between the surface and RX, with flexibility to reposition it for
varied measurements. Notably, the TX, RX, and smart surface lie in the same horizontal plane, enabling
position estimation using the two-antenna array. Notice that we only probe configurations for the different
values of the azimuth 0 as having the TX and RX in the same plane sets the optimal elevation to ¢ = 09.
Echoes estimates the position using ( 8% , OF).

The smart surface prototype in our testbed features a 10x10 grid of unit cells based on patch antennas,
operating at 5.3 GHz. The patch antennas are spaced 6 =A/2 = 2.82 cm apart. Each unit cell supports a 3-bit
phase shift configuration: the 000 setting deactivates the element, while the remaining 7 bit combinations
apply phase shifts {, = (2r/7)nn forn € {0, ..., 6}, corresponding to |, € {0°, 51.42°,102.85°, 154.85°, 205.71°,
257.14°, 308.57°}. Deactivating all elements switches the surface to absorption mode. The prototype
achieves a half-power beamwidth (HPBW) of =10° when reflecting signals toward a target direction.

A far-field precomputed codebook manages configurations. Since each element only supports 7 discrete
phase shifts, codebook values are rounded to the nearest y,. When applying a global phase offset, it is
constrained to multiples of Y, (n € {0, ..., 6}). The codebook spans azimuth angles [-60°, 60°] and elevation
angles [-45°, 45°], incremented in 5° steps, yielding 437 total configurations. Figure 2-48a demonstrates a
configuration with 8 = 30°, ¢ = 0°, and no offset, while Figure 2-48b -illustrates the same beam direction with
an added Yo = 51.42° offset.

The first tests consist of evaluating the effect of adding a phase shift offset to all elements. The effect of
adding an offset value creates a sinusoidal pattern on the received power gain. Figure 2-49 shows the
normalized UL-RSRP measured for the two antennas at the RX. It is possible to clearly observe the sinusoidal
pattern that different offsets create on the received gain. We also see that both sine functions are not in-
phase and precisely that observation is what allow us to measure the angle of arrival between a user and the
receiver.
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Figure 2-48: RIS validation - Codebook configuration with, (left) 8 = 302, ¢ = 02 and = 02, and (right) with 6 = 309,
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Figure 2-49: RIS Validation - Received power gain per antenna using the best phase shift offset value

To test the localization performance of Echoes, we place the TX at multiple locations and analyze the UE
positions estimated by Echoes. Figure 2-50 marks the actual UE positions with black dots, covering angular
ranges 6,f € [215°, 245°] and G)ﬁ €[27°,73°], with distances from 1.3 m to 4.3 m relative to the smart surface.
Since all components lie in the same plane, we limit Echoes’ codebook probing phase to configurations Cy
with © € [-55°, 55°] and ¢ = 0°. Figure 2-50 also shows Echoes’ predicted locations (red crosses) for each TX
position. The estimates align closely with the TX-to-smart-surface axis, indicating strong 6.} accuracy.
However, minor variability arises along the TX-to-small-cell axis due to less precise On, calculations. Most
predictions exhibit a systematic southward bias, with two outliers deviating from this trend.

® Ground truth ®x  Predicted
1

Figure 2-50: RIS validation - Predicted UE positions by Echoes in the 2D space.
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The estimation error is due to two main factors. First, the codebook’s steering angle discretization of 52
ultimately limits the accuracy of estimating 6.}, resulting in a Mean Absolute Error (MAE) for 6,% is 2.15¢2.
Second, the fact that we are only using one pair of antennas makes that the ®" error is relatively high (with
a MAE of 14.152), limiting our ability to locate the TX in the different tested position. Using additional pairs
of antennas would help us to reduce this error. Nevertheless, these errors allow Echoes to give a location
estimation with a MAE distance error of 0.92 m.

2.3.6.4 Conclusion

To validate the integration of RIS into the BeGREEN architecture, we have presented Echoes, an ISAC indoor
localization system, which leverages the available metrics of an O-RAN small cell and a RIS to predict user’s
positions within a sensing area. Precise user location is pivotal for enhancing 5G RAN energy efficiency, as it
may enable critical power-saving mechanisms like adaptive beamforming, which focuses energy towards
specific UEs, and intelligent cell sleeping based on real-time UE distribution.

Echoes relies on the UL-RSRP signals and the available periodic KPM measurements in O-RAN to locate a user
by suitably reconfiguring the smart surface using both the E2 and F1-x interfaces. Echoes adjusts the smart
surface’s phase offsets to identify the user direction that optimizes receiver gain and compute the AoA
between the user and small cell. We evaluated Echoes in a practical indoor 5G setup compatible with the
BeGREEN architecture, highlighting its performance in uncontrolled, multipath-rich environments. Finally,
we have detailed Echoes’ integration into the O-RAN framework, demonstrating its operational viability
under real-world architectural constraints. The use of these UE location and mobility awareness solutions
such as Echoes, within the BeGREEN architecture, may allow for significantly more effective implementation
of RAN energy-saving strategies and lead to reduced transmission overhead or optimized power allocation.
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3 Final Evaluation of Al/ML-Assisted Procedures to Enhance Energy
Efficiency

This chapter presents the final evaluation of the Al/ML-assisted methods developed throughout this WP.
Compared to previous deliverables, and for having a more consistent structure in this final deliverable, RIS
and Intelligence Plane validations have been reported in Chapter 2. Additionally, contributions related to
energy efficiency in ML models and the Intelligence Plane are detailed in Section 2.2. Consequently, this
chapter focuses on the final validation of five Al/ML-assisted methods aimed at enhancing energy efficiency
across the BeGREEN use cases: VRANS, real 5G NSA deployments, relay-enhanced RANs, edge nodes hosting
UPFs, and edge nodes hosting Al services. Results highlight the benefits of the developed solutions and the
application of Al/ML to enhance energy efficiency without impairing traffic performance.

3.1 Compute resource allocation in vRAN

As we explained in previous deliverables, the increased computing overhead has its roots in the lack of cache
memory isolation. The computing overhead increases the total energy consumption of the vRAN platform.
Figure 3-1 shows the relationship between the normalized energy consumption on top of the system’s
baseline (i.e. idle) consumption of our vVRAN platform as a function of the total computing load. The
computing load and the energy are linearly related. Therefore, it is key to minimize the computing usage of
our VRAN platform to keep operational energy costs low. In the previous deliverables, we developed a
solution to dimension the computing capacity of a vRAN system, considering the increased computing usage
due to the noisy neighbour problem.

However, in previous deliverables we did not consider minimising the increased overhead but adapting to it.
In this final deliverable, we seek to reduce the computing overhead as much as possible. We begin studying
how isolating the different cache memory levels influences the total system computing consumption. We
found that vBSs traffic demand is virtually orthogonal to using cache resources, i.e., vBSs use as much cache
memory as possible. However, the utility of cache memory is different for different traffic demands. The
vBSs with higher demands and Signal-to-Noise-Ratio (SNR) can reduce their computing usage more when
they have more cache memory available. Thus, developing a solution that strategically allocates the cache
memory resources to the different vBS instances according to their demands is key to minimize energy
consumption. Due to the complex relationship between computing and radio resources, we propose a novel
approach that can effectively allocate the cache resources to minimize the total computing usage and,
consequently, reduce the energy consumption of vRAN platforms.

3.1.1Cache memory isolation

To evaluate the impact of cache memory resources on the noisy neighbor problem in vRANs’ energy
consumption, we measured the computing usage and low-level cache metrics deploying a different number
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Figure 3-1: vRAN resource allocation - Energy consumption as a function of the computing load.
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Figure 3-2: vRAN resource allocation - vRAN testbed

of vBS instances in different scenarios in our vRAN platform. Figure 3-2 shows our experimental vRAN
platform. Therein, we deploy the different vBS instances in an isolated pool of computing cores from an Intel
Xenon E5-2650 v4 CPU @ 2.20GHz in a shared off-the-shelf server.

Each vBS has its dedicated RF radio head connected to one UE, which is used to emulate the aggregated cell
load. We configured the pool of computing cores to retain as much predictability as possible: (i) we isolated
12 cores with 12 dedicated Last Level Cache (LLC) ways, (ii) the system can only use CO/C1 C-states and we
turned off hardware P-states and (iii) we deactivated Hyper-threading. We then initiate bidirectional data
flows, both uplink (UL) and downlink (DL), with maximum load and good wireless channel conditions
between each vBS instance and different user equipment (UE). We consider the following scenarios:

¢ Ideal. We compute the CPU usage scaling linearly the usage of a single vBS instance by assuming that
the cache memory size also scales linearly.

¢ Noisolation. We deploy an increasing quantity of vBS instances without any cache memory isolation
mechanism.

¢ Pinning. L1 and L2 cache levels are dedicated per core. We pin different vBS instances to distinct
cores to assess the impact on L1 and L2 cache isolation. To facilitate comparisons, the number of
cores assigned to each vBS is given by:

BS — total cores J
COTESpervos = deployed vBSs

where the total number of cores equals 12 and the number of deployed vBS increases from 1 to 5.
Note that when 5 vBSs are deployed, each vBS is assigned to 2 cores and two free cores are left.

¢ Pinning + LLC isolation. We perform the L3 cache allocation in the same manner as the CPU pinning.
We allocate the total number of cache ways equally for every single vBS, i.e. the number of cache
ways per vBS is given by:

total cache ways

h BS =
cache ways per v deployed vBSs

In our platform, there are a total of 12 cache ways. We use Intel CAT to allocate the LLC cache ways
to the corresponding computing cores.

Figure 3-3 shows the measured computing usage in the different scenarios. We observe that, for the no
isolation configuration, the computing usage increases by approximately 50% compared to the ideal case,
increasing the energy consumption. This also impacts the IPC and MPKI, as shown in Figure 3-4and Figure
3-5, respectively. We observe that the IPC decreases and the cache misses increase as more instances are
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deployed. There is a sixfold increase in the cache misses when transitioning from 1 to 5 vBSs. This increase
also impacts the number of cycles required to execute the same number of instructions, decreasing the IPC.

The Pinning configuration shows a lower computing usage than the No isolation but still higher than the ideal
case. The computing usage decrease is significant considering that L1 cache ways are approximately 100
times lower in size than L3 cache ways and L2 cache ways are 10 times lower in size than L3 cache ways. In
Figure 3-4 we can observe a higher IPC across any number of deployed vBSs compared to the No isolation
scenario. However, Figure 3-5 shows the same number of cache misses for all the cases. This might seem
shocking at first glance, but as we have previously detailed L1 and L2 cache way size is very low compared to
L3.

Finally, to study the effect of the L3 cache isolation. In Figure 3-3, the Pinning + LLC isolation configuration
does not improve the computing usage. Specifically, the computing usage is the same for all the cases except
for the case with 5 vBS, in which it is slightly higher. The reason behind this behavior is that we only allocate
10 out of 12 L3 cache ways to all vBSs for the case of 5 vBSs, while in the Pinning configuration, all vBSs have
all the L3 cache memory available, using on average 2.4 L3 cache ways.

WS No Isolation B Pinning
I Pinning + LLC Isolation "5 Ideal

1 2 3 4 5
Number of vBSs instances

Figure 3-3: vRAN resource allocation - Comparison of the aggregated per-core usage with # of vBS instances
showing the “No isolation”, the “Pinning” and the “Pinning + LLC isolation” scenarios.
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Figure 3-4: vRAN resource allocation - Instructions per cycle (IPC) with # of vBSs.
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Figure 3-5: vRAN resource allocation - Misses per 1000 instruction (MPKI) with # of vBSs.

UL LoW == DL Low m—— JL Low === DL Low
s UL High === DL High m=—= UL High === DL High
100 100 4 X
= =
1=} 1=}
A e [
[=% [=%
= =3
g 704 g 70
(o] o]
Y 60 Y 60
| -
50 . . . - 50 . . . ;
25 50 75 100 25 50 75 100
Normalized Demand [%)] Normalized Demand [%]
(a) 12 LLC cache ways. (b) 2 LLC cache ways.

Figure 3-6: VRAN resource allocation - LLC occupancy in % as a function of the total demand for different SNR cases
in UL and DL.

3.1.2LLC Occupancy and utility

We now study how the allocation of LLC cache ways impacts the computing usage of a vBS instance. First,
we measure the percentage of LLC cache memory used of the total LLC memory allocated to a vBS as a
function of the traffic demand. Figure 3-6shows the LLC occupancy with 12 and 2 LLC cache ways for different
SNR values and traffic demands in UL and DL. The high series depict the LLC occupancy with a high SNR
environment while the low series depict the LLC occupancy with a low SNR environment. We can see that
the total LLC occupancy is above 80% for uplink and downlink. Also, the LLC occupancy is almost orthogonal
to the demand of the vBS, yielding an increase of a 2 - 6% when the demand goes from 10% to 100%.

Figure 3-7 depicts the computing usage of a vBS as a function of the L3 cache ways when we deploy it using
3 cores. Figure 3-8 depicts the computing usage for the different Modulation and Coding Schemes (MCSs)
with a low traffic demand (i.e. 20% of the total demand) and high traffic demand (i.e. 100% of the total
demand) for uplink and downlink. We observe that there are significant differences between the achievable
computing usage reduction. For high traffic both in UL and DL, we can achieve a more significant computing
usage reduction. On the contrary, a vBS that processes a low traffic demand can attain lower gains in terms
of computing usage. We conclude that LLC resources have different utility depending on the vBS context.

This contrasts with Figure 3-6 which shows that the vBS makes full use of the cache memory regardless of
the demand. Thus, if there is no LLC cache allocation mechanism, all vBSs deployed will be using the same
amount of LLC cache memory on average. It is key to strategically distribute the LLC cache ways among the
vBSs deployed boosting its utility to minimize the computing usage and therefore the energy consumption
depending on the traffic demands.
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Figure 3-7: vRAN resource allocation - Computing usage as a function of the LLC allocated cache ways for different
SNR and in UL and DL.
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Figure 3-8: vRAN resource allocation - Computing usage and decoding time of a vBS with max. UL and DL load with
mild MCS over different SNR conditions.

Quantifying the LLC cache memory utility is a challenging task. The LLC cache utility depends on the
computing demands of the vBS which are influenced by various factors, including traffic demand in both the
DL and UL, the signal-to-noise ratio (SNR) of each wireless link, and the specific MCS utilized for
communication. All these elements interact in a complex manner [14], [6]. Figure 3-8a depicts the relative
mean core usage of the vBS, and shows that, given a MCS, lower SNR regimes demand a higher amount of
computing resources. The underlying reason is the iterative nature of the forward-error correction (FEC)
algorithms — signals received with lower SNR require a higher number of FEC iterations to decode the
transported codeword successfully. This is confirmed by Figure 3-8b, which shows the amount of time taken
by the decoder to finish its task for every transport block.

3.1.3 Problem formulation

We consider a vVRAN platform comprising M,res cOmputing cores and Ny LLC cache ways. We consider that
N,gs VBS instances are deployed in the platform. Every vBS i in the vRAN platform has both a UL and DL
traffic demand denoted by d}”“ and dPL, respectively; a SNR s;; and an MCS in UL and DL denoted by m}”‘
and mPL, respectively, that the radio scheduler selects depending on s;. The vBS i has a set of isolated cores
P; such that |P;| > 0 and a number of dedicated LLC cache ways n}LC , Where n n}LC > 1Vi. We need to
satisfy that )}; P; < M ores and X; n}LC = N1 c. We define ¢; as the computing use of vBS i. We define x; :=
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(dPt, dPL, s;, mPt, mPL) as the context of the vBS i. Moreover, we define f; as the function that maps x; and

ni-‘"c to the computing usage c;.

Finally, we define vector y which concatenates the context vectors from all vBS as y = (X1, X3, .., Xn )
Also, we define P := (Py, ..., Py ) and V" := (nite ..., n,';,';(BZS) as the vectors with the core set allocation and
the LLC cache ways allocation on a vRAN platform. Similarly, we define the function f which maps (y, V') to
the total computing usage CVRAN € [0, M,.] of the VRAN platform. We define the problem of optimizing
the computing set and the LLC allocation as:

min f (¢, V)

subject to 2 n}LC = Niic
i

As explained in previous deliverables, the computing usage and the energy consumption are proportional.
Thus, minimizing the computing usage function f also minimizes the total energy consumption. Note that, in
our problem, the assignment of CPU cores to vBS P is already given. We select a fixed value of P based on
our experimental insights and previous works on this topic as presented in the previous deliverables (see
D4.2 [2] for more details). Note that, in the problem presented, the optimal LLC cache allocation depends on
the context y, whose dimensionality increases depending on the number of vBSs. Moreover, the optimal
action is also dependent on the number of active vBS, which may change over time. To avoid the exploration
burden of learning algorithms (e.g., reinforcement learning) that can lead to suboptimal configurations, we
decompose the problem and use a digital twin (DT) system.

3.1.4MemorAl

To solve the presented problem, we propose an optimization framework which we call MemorAl. This
framework considers discrete decision intervals denoted by t € {1,2,...,T}. At the beginning of each
decision interval, our solution receives )((t), and decides the optimal LLC allocation N*® across all vBSs, to
minimize the energy consumption. MemorAl is composed of a set of DTs and a NN classifier. Figure 3-9 shows
our optimization framework.

Thanks to full vBS isolation via pinning it to dedicated cores and LLC cache ways allocation, we make the
observation that CYR4N = Y. ¢; as there are no joint effects between vBSs. This observation implies that
fGoN) =X f(x;, n}LC). As there is no interaction among vBS in terms of computing usage, we can create
DTs of independent vBS. Thus, we can mirror their behavior in a safe and controlled environment for testing
and learning. Each DT can model the particularities of each vBS (e.g., different implementations protocol
stacks) and we can emulate the complex interactions of the full vRAN system. We create a DT using
operational data from one vBSs. Using each vBS’s DTs, we can lower the time cost to generate a dataset for
a number of vBS as we aggregate the results of each DT. Note that without the DTs, the amount of data
needed to create a training dataset increases exponentially with the number of vBS (curse of dimensionality).

@ Digital Twin || @ Optimal dataset generation ||@ Classifier
Training for minimum CVRAN Training
C; N*
t N~ t
% 2 t ‘D 2
iP Pl iR | fe
. R f
(x, P,ntC) (X, P) (X,P)
(One vBS real data)

Figure 3-9: vRAN resource allocation - MemorAl optimization framework.
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To create the DT of one vBS we used our vRAN platform to generate a training dataset with a fixed computing
core set |P|. Note that we select a set of cores such that vBS can correctly operate. This makes f; a
continuous function. Each dataset sample contains a 4-tuple with (x, P, nlLC ). Using this dataset, we built
up a DT using a NN which approximates c using (x, P, nLLC) i.e. it approximates f; minimizing the Minimum

Squared Error (MSE). We denote the DT function as fl-D. Figure 3-9, also shows the DT training step (1).

The DT allows us to evaluate the CPU usage of different configurations very accurately without having to use

the real system. Therefore, we can perform an exhaustive search to find the optimal LLC allocation V'* for a

set of contexts (), P). Note that the size of the set of possible LLC cache allocations is |[N| = (HS:;) Figure

3-9, shows how using the different DTs we generate the previous data set (2). Using this data set, we train a
fully connected NN to predict V" for a given context (y, P). Specifically, we solve a multi-class classification
problem using the cross-entropy loss function. We denote the classifier function as fc_ Note that our solution
is very flexible to changes in the system (e.g., upgrades in the implementation of the software stack,
deployment of new vBSs, etc.). In those cases, after having the DT modeling, we can easily retrain the NN
classifier offline without degrading the performance of the system. Finally, Figure 3-9, shows the classifier
training step of our optimization framework (3).

3.1.5 Performance Evaluation

In this section, we evaluate the performance and potential savings of our approach. We carry out the
evaluation for a N,gg = 5 vBS deployment. We used PyTorch® to implement the DT and the Classifier.

Training Evaluation

1. Digital Twin (DT): We implemented the DT of one vBS using a NN with three hidden layers of sizes
{256,128, 64} respectively with a ReLU activation function. Moreover, we stop the training iterations
using an early stopping mechanism to prevent overfitting. The early stopping mechanism stops the
training after the value of the loss function in a validation data set has not improved during the last N
training iterations. N is usually referred to as patience. Figure 3-10 shows the MSE loss value on the
training and validation data sets of the DT as a function of the training iterations. We selected a patience
of N = 10 and trained the model during 70 iterations.

2. NN Classifier: On the other hand, we implemented the Classifier as a NN with 4 hidden fully connected
layers of sizes {512, 384, 384, 512} respectively. Each layer also used a ReLU activation function and we
introduced a 0.2 dropout probability during training. We also use the early stopping mechanism with
N = 50 of patience. Figure 3-11 shows the cross-entropy loss on the training and validation data set as
a function of the number of training iterations. We train the model until iteration 300 (due to the early
stopping mechanism). The training loss is higher than the validation loss due to the dropout layers. Also,
the classifier achieves a 92.1% accuracy on our testing data set.
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Figure 3-10: vRAN resource allocation - Digital Twin MSE
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Figure 3-11: vRAN resource allocation - NN Classifier Cross

Performance Benchmark

We design MemorAl to operate in the Non-Real Time RIC of the O-RAN architecture as an rApp. Based on
this, we selected a time granularity of 15 minutes for our evaluation. We generated a data set with random
context data and compared MemorAl against the following approaches:

e Random: We select the allocation of cache ways for each vBS randomly;

e Equal partition: All the vBSs get allocated the same number of cache ways. Extra cache ways are left
unallocated;

¢ Weighted: Each vBS gets allocated a number of cache ways as proportionally to its total demand as:

UL DL
we_ At +d]

ny " =S 500 oL VLLC
l Zfd}JL+dJDL

Figure 3-12a shows the energy savings in kilojoules (kJ) of our solution and the optimal strategy with respect
to the different benchmarks in a decision interval of 15 minutes. Our solution outperforms the three
benchmarks in terms of energy while producing almost the same results as the optimal solution. Thus,
MemorAl understands better the utility of LLC cache partitioning than benchmark strategies. Our solution
yields higher savings up to 1 kJ compared to the random strategy, up to 0.35 kJ compared to the equal
partitioning, and up to 0.36 k) compared to the weighted strategy. Note that, although the weighted strategy
shows a lower power consumption, it does not scale the LLC cache properly when there is an imbalance
between UL and DL demands. In these cases, our approach achieves the highest gains with respect to this
strategy. Finally, Figure 3-12b shows the attained gains when the system has only 8 cache ways available. In
that case, the random approach performs better because the number of configurations is lower and
therefore the probability of selecting the optimal configuration is higher. The savings compared to the equal
partition approach are higher as the benchmark can only allocate one cache way per vBS in this scenario.
Compared to the weighted strategy, we still observe higher savings.
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Figure 3-12: vRAN resource allocation - Energy savings compared to different benchmarks and different number of
cache ways for a 15 min decision interval
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3.1.6Conclusions

Cache memory is a key resource for vRANs to reduce energy consumption. Non-isolated access to cache
memory resources increases energy consumption, making less attractive the advantages of virtualization. In
this final deliverable, we have studied how the different mechanisms for cache memory isolation decrease
the energy consumption of a VRAN platform. Then, we proposed MemorAl which strategically allocates LLC
resources to minimize energy consumption. MemorAl comprises a digital twin and a NN classifier, providing
a very efficient and flexible solution. MemorAl achieves almost optimal performance and can attain
significant energy savings when compared with other strategies.

3.2 AI/ML and data-driven strategies for energy-efficient 5G carrier on/off
switching

In this section, we present an Al-driven QoS-aware energy-saving strategy to manage 5G carrier on/off
switching. The objective is to enhance energy efficiency while ensuring a certain throughput level during
switch-off periods. This work is aligned with BeGREEN D2.3 [19] (Section 4.8), where we evaluated existing
switch-off opportunities in a real cellular deployment by using data from a commercial Mobile Network
Operator (MNO). The approach involved offloading 5G cell traffic to the 4G cells of the same site and sector.

Recall that the optimal strategy, i.e., an oracle-like approach with full dataset visibility, quantified potential
switch-off opportunities across the 200 evaluated cells. However, the achievable energy savings decreased
when specific QoS requirements were imposed. Specifically, the estimated Energy Savings dropped from 79%
of total consumption (13.7 MWh) to 17% (2.9 MWh) when increasing the throughput constraint from 0 Mbps
(no constraints) to 25 Mbps (high constraints). Figure 3-13 illustrates this trade-off, showing a heat map of
energy-saving opportunities (left) and the energy savings vs. QoS trade-off (right). Achievable throughput
levels were estimated according to the correlation between cell load and average UE throughput level found
in the dataset, as analysed BeGREEN D2.3 [19]. The considered levels were selected according to typical
throughputs required by video streaming applications, such as Netflix or YouTube.

In BeGREEN D4.2 [2] we defined general energy-saving strategies, including both heuristics and ML-based,
but those did not contemplate QoS aspects. To develop a QoS-aware strategy, as mentioned earlier in
Section 2.3.1, we developed and evaluated Logistic Regression classifiers. To reduce the computational cost
of analysis and optimization, the study was limited to a subset of 70 cells located in an urban scenario
characterized by a high diversity of switch-off opportunities. Figure 3-14 illustrates the selected cell set and
the distribution of switch-off times over the course of a full week.
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Figure 3-13: 5G Carrier on/off switching — Energy Savings opportunities (left), and Energy Savings/QoS trade-off
(right).
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Figure 3-14: 5G Carrier on/off switching — Reduced set of cells (left), and Energy Savings opportunities (right).

3.2.1Classifier description

To train the model, we generated a dataset containing information on switch-off opportunities and the QoS
provided during switch-off periods. This was achieved by collecting results from the optimal strategy applied
over two weeks of data across all cells in the deployment, with an additional week reserved for initial
evaluation and hyperparameter tuning, and a fourth week for evaluation of the different policies. Recall that
the oracle-like strategy based its QoS calculations on a regression method based on historical cell-level data.
Our QoS estimation method was found to have a mean absolute error of 4.7 when evaluated over an unseen
week of data across all dataset cells. Therefore, we decided to separate output columns in discrete intervals
of 5 Mbps.

The classifier takes as input the 5G load and the load of active 4G cells within the same site and sector. It
outputs six binary decisions, each corresponding to a predefined throughput level: 0 Mbps, 5 Mbps, 10 Mbps,
15 Mbps, 20 Mbps, and 25 Mbps. The logic follows the same approach used in BeGREEN D4.2 [2] for the
simple classifier strategy but extends it to all considered throughput levels. Each output column indicates,
for each time period, whether a given 5G cell can be switched off while still meeting the throughput
requirements of the 4G cells used for offloading. When deploying the model, two types of erroneous
decisions may occur:

- Missed energy-saving opportunities: The model decides to keep the 5G cell ON, even though the
traffic could have been offloaded and the throughput requirement met.

- Outage decisions: The model decides to switch the 5G cell OFF, but the throughput requirement
cannot be met, or the traffic cannot be offloaded at all (i.e., a 0 Mbps case).

The missed opportunities decisions lead to wasted energy. However, note that for an operator those are not
as critical as the outage decisions, which can make UEs to experience lower throughputs than the required
ones or lead to cell saturation. This trade-off between missed energy-savings and outage decisions can be
weighted during model training by tuning the “class weight” hyperparameter. It allows setting specific
weights to each of the output classes, which are 0 (or OFF), and 1 (or ON), so that the model prioritizes the
learning of one class over the other according to the weight’s ratio.

We evaluate the effect of tuning the class weights on the recall and precision metrics obtained over the
training set, which are directly linked with the outage and missed opportunities decisions. Those are defined
as:

Recall = TP = (TP + FN)
Precision = TP = (TP + FP)

where TP, FN, and FP are True Positives, False Negatives, and False Positives, respectively
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Figure 3-15: 5G Carrier on/off switching — Precision curve for the Logistic Regression multi-output classifier.
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Figure 3-16: 5G Carrier on/off switching — Recall curve for the Logistic Regression multi-output classifier.

The outage decisions, or False Negatives, get reduced in the high recall domain. Conversely, the missed
opportunity decisions, or False Positives, get reduced in the high precision domain. To get an intuition on
how the class weights affect the model, and the trade-off between precision and recall, we evaluated our
model for different class ratios.

Figure 3-15 and Figure 3-16 show the obtained results. We observe that when the class ratio is below one,
recall is increased while precision decreases; conversely, when the ratio is above one, precision improves at
the expense of recall. To reduce outage decisions, it is preferable to use class ratios below one. However,
very low ratios significantly reduce precision, leading to an increase in missed energy-saving opportunities.
We also appreciate some differences between the output columns’ behaviour (i.e., QoS levels), which are
related to the distribution of on/off decisions in each column Higher throughput levels present fewer
opportunities for switching off, which leads to a faster increase in recall for those cases.

The differences observed between output columns may motivate the use of individual hyperparameter
tuning to optimize each column’s performance. Note that the multi-output classifier used is an ensemble of
estimators, with each estimator trained to fit a specific output column, effectively functioning as six
individual classifiers. However, hyperparameters are set globally, meaning all output columns share the same
configuration and setting individual weights are not allowed. Conversely, compared to the training of six
independent classifiers for each of the QoS levels, this approach offers significant advantages in terms of
computational cost, training and retraining speed, energy consumption, and inference efficiency.

To assess the impact of this trade-off, the next section compares results obtained with the multi-output
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classifier against those from six independently trained classifiers, where individual hyperparameter tuning is
possible.

3.2.2 Classifier evaluation

In this section, we present the results obtained over the evaluation week, focusing on two main aspects: the
effect of class weighting, and the comparison between multi-output and single-output classifiers (i.e., global
versus individual class weight settings). Since our objective is to prioritize the reduction of outage decisions,
we evaluate class weight ratios below 1, which maximize recall metric. Next figures illustrate the average
number of outage decisions (Figure 3-17), missed opportunities (Figure 3-18), and total erroneous decisions
(Figure 3-19) across cells as the class ratio decreases. The outage decisions and the missed opportunities
figures are normalized to the total amount of ON and OFF decisions, respectively, while the erroneous
decisions figure is normalized to the total amount of decisions taken by the classifier.

Results in the figures reveal that, as the class ratio decreases, missed opportunities increase more rapidly
than the reduction in outage decisions. This trend is confirmed in the total erroneous decisions plot, which
consistently shows an increase with the class ratio. One of the key takeaways from this analysis is that
reducing outage decisions inevitably leads to a disproportionately greater rise in missed energy saving
opportunities, as can be inferred from the impact of lowering the class weights ratio on precision metric
show in Figure 3-15. Note that in the case of 20 and 25 Mbps, the total number of erroneous decisions,
illustrated in Figure 3-19, tends to stabilize with the increase of the weights. However, this is caused by the
very reduced number of OFF decisions being taken for these QoS levels, as was shown in Figure 3-18, which
consequently leads to almost zero outage decisions, as depicted in Figure 3-17.
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Figure 3-17: 5G Carrier on/off switching — SLA Outage decisions according to the class ratio
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Figure 3-18: 5G Carrier on/off switching — Missed energy saving opportunities according to the class ratio
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Figure 3-19: 5G Carrier on/off switching — Total erroneous decisions according to the class ratio
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Figure 3-20: 5G Carrier on/off switching — SLA Outage deviation according to the class ratio

Figure 3-20 quantifies the impact of Service Level Agreement (SLA) outages on expected throughput. The
metric is expressed as a percentage relative to each SLA level: for example, a 10% deviation in the 5 Mbps
column corresponds to an outage of 0.5 Mbps or less, while the same percentage in the 25 Mbps column
represents an outage of 2.5 Mbps or less. Once again, adopting a more conservative approach clearly
improves this metric, especially in the case of high QoS levels, but at the cost of reducing switch-off
opportunities.

The observed trends, both in decreases and increases, vary between columns, with some exhibiting
significantly larger errors or achieving more substantial reductions in outage decisions than others. This
supports the hypothesis that individual hyperparameter tuning for each column may lead to improved
overall performance. To investigate this, we compare the performance and energy saving results obtained
using the multi-output classifier versus six independently trained single-output classifiers, under two
different policy constraints: (i) Outage decisions must remain below 10% and (ii) outage deviation must
remain below 15%.

The key difference between both approaches lies on how the class weight ratio is determined. In the case of
the multi-output classifier, a single global ratio must be selected and applied, which ensures that the policy
constraint is met for every column. In contrast, when using six individual classifiers, each column can be
trained with its own specific class ratio: i.e., the least restrictive one that still satisfies the policy based on the
results obtained in prior evaluations.

Following this approach, for the first policy constraint (outage decisions must remain below 10%), we train
the multi-output classifier with a uniform class ratio of 1:4 across all columns.
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Figure 3-21: 5G Carrier on/off switching — Performance of classifiers with selected class ratios (Outage decisions
below 5%)
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Figure 3-22: 5G Carrier on/off switching — Performance of classifiers with selected class ratios (Outage deviation
below 15%)

In contrast, the individual classifiers are tuned with column-specific ratios of 1:3, 1:4, 1:4, 1:3, 1:2, and 1:1,
respectively for each QoS limit. Figure 3-21 shows the results obtained for the first policy. The left figure
illustrates the percentage of energy saved relative to the oracle-like strategy, the centre figure shows the
total number of outage decisions, and the right figure the outage deviation. As previously discussed in the
context of the recall/precision trade-off, lower class ratios have a more significant impact on high-throughput
levels, as these offer fewer switch-off opportunities. Therefore, individual classifiers outperform multi-
output classifier in the amount of energy saved, since they are allowed to use less restrictive class ratios
while still meeting policy constraints (as shown in the centre figure). In contrast, the multi-output model
results in fewer outage decisions and deviations, as it requires a more conservative class ratio. However, the
individual classifiers in some cases can reach outage deviations of around 20%, which may be problematic in
certain scenarios.

Consequently, the second policy considers the outage deviation, trying to decrease trying to decrease the
difference between the obtained and the SLA throughputs. The multi-output class ratio is therefore set to
1:8, while individual classifiers are configured to 1:2, 1:2, 1:8, 1:7, 1:6 and 1:3, respectively for each QoS limit.
Since the 0 Mbps outage decisions translate into saturation of the 4G cells (i.e., no measurable outage
deviation exists) in the case of individual classifiers we impose the same ratio as in the 5 Mbps column. Note
that, compared to the previous case, this is a most restrictive policy for almost all QoS constraints (except 0
and 5 Mbps cases) leading in the other cases to less energy savings and outage decisions. Also, the impact of
the common class weight in the multi-output classifier is particularly severe for the highest QoS constraint,
resulting in almost no energy savings. These results highlight the advantages of individually tuned classifiers.

Once it was validated that tuning class weights in individual classifiers can outperform multi-output models,
we extended the comparison to a different type of classifier. Specifically, we tested a widely known tree-
based model: the XGBoost Classifier. This model uses a tree-boosting algorithm that has proven effective in
classification tasks, even when handling missing data.
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Figure 3-23: 5G Carrier on/off switching — SLA Outage decisions and missed opportunities according to the class
ratio (XGBoost)
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Figure 3-24: 5G Carrier on/off switching — Erroneous decisions and outage deviation according to the class ratio
(XGBoost)
We followed the same methodology as with the Logistic Regression classifier. First, we use a testing week to

analyze the trade-off between outage decisions and missed opportunities. Then, under identical SLA policies
or constraints, we determined the optimal class ratios for the evaluation week.

Figure 3-23 and Figure 3-24 show the results obtained for the testing week. As illustrated, the XGBoost
Classifier achieves better performance than Logistic Regression. It results in significantly fewer outage

decisions, and missed opportunities increase more gradually. These outcomes suggest that the XGBoost
Classifier is more suitable for the targeted use case.

We next analyzed the results obtained under the same policies or SLA constraints considered in the previous
section: an outage decision rate below 10% and an outage deviation below 15%. For the XGBoost Classifier,
the corresponding class ratios for the first policy were: 1/2,1/3,1/2,1/1, 1/1, 1/1. For the second policy, the
ratios were: 1/3,1/3, 1/1, 1/1, 1/3, 1/1. It is worth noting that, in general, XGBoost allows for more aggressive
weight selection, which results in a lower number of missed opportunities. Figure 3-25 and Figure 3-26
present a comparison between the individual classifier approach using Logistic Regression and XGBoost, with
the respective computed class weights for both policies.
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Figure 3-25: 5G Carrier on/off switching — Comparison between Logistic Regression and XGBoost Classifier on policy
1 (outage decisions < 10%)
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Figure 3-26: 5G Carrier on/off switching — Comparison between Logistic Regression and XGBoost Classifier on policy
2 (outage deviation < 15%)

Except for the outage decisions at 0 Mbps and the outage deviation at 5 Mbps, the XGBoost Classifier

outperforms the Logistic Regression model under the first policy, demonstrating significant improvements

in both energy savings and reduced outage decisions. This effect is especially pronounced under high-

throughput SLA conditions, suggesting that XGBoost handles unbalanced class distributions more effectively.

The performance gap is even wider under the second policy. The stricter constraints imposed by this policy
force the Logistic Regression model to adopt much lower class ratios, while the XGBoost Classifier can
consider more aggressive weighting. As a result, XGBoost achieves higher energy savings at high throughput
levels, while maintaining outage deviations below the 15% threshold. However, Logistic Regression is more
conservative in its outage decisions, mainly due to the lower class weights required to comply with the policy.

3.2.3Conclusions

Energy-efficient cell control through dynamic cell on/off switching is a key strategy for achieving energy
savings in cellular networks and represents one of the primary energy-efficiency use cases within O-RAN.
AI/ML plays a crucial role in this context, as accurate load and QoS predictions are essential to enable
proactive and automated control loops that improve energy efficiency in the network without compromising
traffic performance. Across the various deliverables of this Work Package and BeGREEN D2.3 [19], we have
leveraged data from a real 5G NSA deployment provided by a MNO to characterize the trade-off between
energy-saving opportunities and QoS impacts when switching off 5G cells and offloading their traffic to 4G
cells in the same site and sector.

First, we demonstrated that the strong correlation between cell load and energy consumption, combined
with the regularity of day-night traffic cycles, makes this scenario well-suited for the application of predictive
algorithms that decide on cell on/off switching based on 4G and 5G load patterns. However, due to the
different characteristics of 5G and 4G cells, traffic offloading can sometimes result in QoS degradation. In
this deliverable, we incorporate QoS constraints into the decision-making loop, and characterize the trade-
offs and performance of both single and multi-output classifiers in making on/off decisions. Results
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demonstrate that individually tunning the weights of the models according to QoS constraints can improve
decision-making and provide notable energy savings without compromising performance. Finally, we
compared the performance of the Logistic Regressor with XGBoost. Findings highlighted that XGBoost is a
more suitable option for our use case, enabling substantial energy savings even under more restrictive policy
constraints than those considered so far.

Future work will explore the application of these strategies to digital twins emulating realistic 5G networks.
This include characterizing their performance according to real-time traffic and UE mobility, and establishing
criteria for conflict mitigation, model retraining and parameter tunning.

3.3 Al/ML-based algorithmic solutions for relay-enhanced RAN control

BeGREEN D4.1 [1] and D4.2 [2] presented a description of different algorithmic solutions with the purpose
to identify the presence of coverage holes (CH) in cellular networks and mitigate them by means of relays.
On the one hand, a coverage hole detection methodology based on a clustering approach was proposed. On
the other hand, an algorithm to identify candidate RUEs (i.e. UEs with relaying capabilities) was presented
with the objective to assess the potentials of RUEs to mitigate coverage holes. Moreover, a fixed relay
placement algorithm was also described. This relay placement algorithm aims to determine adequate
locations to place fixed relays in order to address the presence of coverage holes. Finally, a relay
activation/deactivation algorithm based on a Deep Q Network (DQN) was proposed with the aim to
dynamically activate the relays to serve UEs located inside the coverage hole regions and deactivate them
when they are not necessary, with the objective to reduce power consumption. An initial evaluation of the
proposed algorithms was presented in D4.2 [2].

This section presents an extension of the initial results provided in BeGREEN D4.2 [2]. The proposed solutions
have been evaluated in a realistic scenario using real measurements of the UE space/time distribution.
Section 3.3.1 presents a description of the considered scenario. Additionally, a description of the gNB and
relay power consumption model is also provided. Then, Section 3.3.2 presents the performance evaluation
of the different solutions in terms of the UE perceived spectral efficiency and the power consumption. First,
an initial analysis in which no relays are deployed is presented, and a characterization of the identified
coverage holes is provided. Then, a comparison of a solution based on the use of RUEs to mitigate the
coverage holes is compared with respect to the case of no relays and of deploying fixed relays. Finally, the
power consumption of different relay-based solutions is provided. In particular, a solution based on
deploying fixed relays that remain always active, a solution that deactivates fixed relays when they are not
necessary, and a solution based on RUEs are evaluated and compared with respect to the benchmark case
of no relays.

3.3.1Considered scenario

The proposed algorithms have been evaluated in a realistic scenario in a University Campus of the Universitat
Politécnica de Catalunya (UPC). The considered region is a 325m x 125m area with 25 buildings of 3 floors,
denoted as Al, A2, ..., D6, as shown in Figure 3-27. 5G NR coverage on the Campus is provided by three
outdoor gNBs of a public MNO. This scenario has been modelled by means of a system level simulator that
considers the geographical locations of the different buildings and the propagation loss of the transmitted
signal. The Urban Macro (UMa) propagation model described in [31] is considered for the link between the
gNBs and the fixed relays, RUEs and UEs. For the link between the indoor fixed relays and UEs, the Indoor
Hotspot (InH) propagation model from [31] is used. The propagation model in the link between the RUEs and
UEs is taken from [32].

The propagation models include outdoor-to-indoor losses and 2D spatially correlated shadowing.
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Figure 3-27: Relay-enhanced RAN control - Considered scenario.

The space/time UE location characterization is based on real measurements of the time evolution of the
number of users located in the different buildings obtained from dataset [33]. Specifically, the dataset
contains real measurements of the number of users connected in the area of each Wi-Fi APs at the university
campus facilities obtained for multiple hours of different days. Thus, it reflects a realistic space/time UE
location distribution that is taken as input for the 5G system level simulator assuming the UEs are connected
to the gNBs. The considered algorithms have been evaluated using a collection of D=21 days of
measurements. The clustering process executed in the Coverage hole detection algorithm has been done in
N=24 time periods of T=1 hour, for all the days. The rest of parameters of the proposed algorithmic solutions
are also presented in Table 3-1. Concerning the candidate RUE identification process, the algorithm searches
for candidate RUEs that are located in the same building and floor in which the coverage hole is detected,
excluding the coverage hole area. The same search area is considered for the fixed relay placement process.

Table 3-1: Relay-Enhanced RAN Control - Considered Simulation Parameters

Simulation parameters Value

BeGREEN [SNS-JU-101097083]

D 21 days

N 24 periods
T 3600 s
gNB carrier frequency 3.7GHz
Number of Resource Blocks at the gNB (Mws) 273
Number of Resource Blocks at the relay (Mr) 51

gNB channel bandwidth (Bws,or=Mns-Bra ns) 100MHz
gNB max. transmitted power (Pnsmax=Prs ns-Mns) 43dBm
gNB transmitted antenna gain 12dB

Path loss model gNB UMa [31]
Relay/RUE carrier frequency 3.5GHz
Relay/RUE channel bandwidth (Bg,tor=M&r-Br) 100MHz
Relay/RUE max. transmit power (Pg,max=Prs,r-MRg) 5dBm
Relay/RUE antenna gain 3dB

Path loss model fixed relay InH [31]
Path loss model RUE [32]

UE antenna gain 3dB

Noise power spectral density -174dBm/Hz
Noise Figure 9dB
Efficiency factors (ens, €r) 0.59
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To characterize the coverage improvements achieved with the different solutions, the spectral efficiency
observed by the UEs in the downlink direction is considered. The spectral efficiency Sp when a UE is directly
connected to the gNB with the highest SINR is computed by using the Shannon formula as:

Sp = Min[Spmayx, l0g, (1 + SINRyg_yg)] (3-1)

where SINRns.ue is the SINR in the link between the gNB and the UE, and Sn. is the spectral efficiency
corresponding to the maximum MCS of 5G NR from [34]. In turn, when the UE is connected to the gNB via a
relay, the spectral efficiency is limited by the link with the worst conditions between both the gNB-relay and
relay-UE links and it is expressed as:

Sg = min{Spmay, l0gz[1 + Min(SINRyp_reiay SINRye1ay—ue) |} (3-2)

where SINRwg.reiay and SINRreiay-ue denote the SINR in the link between the gNB and the relay and the link
between the relay and the UE, respectively. It is assumed that the UEs select their connectivity (i.e. directly
to the best serving gNB or through a relay) that maximises their spectral efficiency.

For the evaluation of the power consumption at the gNBs and the relays, the model proposed in [35] is
considered, which assumes that the relation between the gBN transmitted power (Prns) and the gNB power
consumption (Pcns) of a specific gNB is nearly linear. Then, the gNB power consumption can be determined
as:

Peng = Pons + ang - Pras (3-3)

where Pgns represents the gNB power consumption at zero RF output power associated to circuits, signal
processing, etc., and ans corresponds to the linear dependency between the total gNB power consumption
Pcns and the transmitted power Prys. Similarly, the total power consumption at the R relays associated to a
specific gNB is:

Peng = Pons + ang - Pras (3-4)
Where Pgr and ag are the power consumption model parameters for the relays and Pz, is the transmitted
power at the r-th relay.

The details of how the transmitted powers Prns and Pz, are calculated are described in Appendix 1. Finally,
the total power consumption in a specific gNBs and its associated R relays is:

R
Per = Z(PO,R +ag- PT,r) (3-5)

r=1

Different values of the power consumption model parameters are considered based on [36][37][38]. Table
3-2 shows the considered combinations of parameters.

Table 3-2: Relay-enhanced RAN control - Power consumption model parameters.

Combination ans Pons(W) ar Por(W)
C1 20.4 13.91
Q2 28.4 156.38 4 6.8
c3 20.4 13.91
ca 4.7 130 4 6.8
cs5 20.4 13.91
Ccé6 2.8 84 4 6.8
Cc7 20.4 13.91
cs 2.57 12.85 4 6.8
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The total power consumption is calculated for different CH mitigation solutions described below:

e Benchmark, No Relays (BNR): In this case, no relays are deployed in the scenario, and then, all UEs
connect directly to the best serving gNB.

e Deployment of Fixed Relays Always On (FRAO): In this solution, it is assumed that the fixed relay
placement algorithm described in D4.2 [2] has been executed and a fixed relay has been deployed
to address each identified CH. In this solution, the fixed relays remain always switched on, even in
situations in which they are not serving UEs.

e Deployment of Fixed Relays On/Off (FROO): In this solution, the deployment of fixed relays is
assumed, and each of the fixed relays is switched off when there are no UEs to be served.

e Deployment of Fixed Relays and RUEs (FRR): In this solution, it is assumed that the candidate RUE
identification process described in D4.2 is active, and some CHs are addressed by means of RUEs. In
case of low availability of RUEs for some specific CHs, fixed relays are deployed according to the
proposed fixed relay placement algorithm. As in the FROO solution, fixed relays are switched off
when there are no UEs to be served.

For the solutions FRAO, FROO and FRR the Power Saving (PS) with respect to the BNR is determined as the
relative difference in percentage between the power consumption of the solution and that of the BNR. It is
worth mentioning that a positive power saving (i.e. PS>0) means that the considered solution consumes less
power than the BNR benchmark case of no relays, while a negative value (i.e. PS<0) indicates that the case
of no relays provides less power consumption.

3.3.2 Performance evaluation

This section evaluates the performance of the proposed solutions in the considered scenario. First, an initial
analysis in which no relays are deployed is presented in section 3.3.2.1, including the obtained
characterization of the detected coverage holes. Then, section 3.3.2.2 presents the results of the candidate
RUE identification process, while section 3.3.2.3 evaluates the performance results obtained with RUEs for
different RUE activation policies. Section 3.3.2.4 presents a comparison of the performance for the case
when no relays are considered, the case of deploying the fixed relays and a solution based on RUEs. Finally,
Section 3.3.2.5 compares the FRAO, FROO and FRR solutions in terms of power saving with respect to BNR.

3.3.2.1 Benchmark - no relays

With the aim of illustrating the overall performance in the network without relays, Figure 3-28 shows the
Cumulative Distribution Function (CDF) of the spectral efficiency observed by the UEs when they are
directly connected to the best serving gNB. The average spectral efficiency in the whole scenario is around
3.4bits/s/Hz. According to Figure 3-28, in 21% of the measurements reported by the UEs, the maximum
spectral efficiency of Sma=7.4bits/s/Hz is obtained, which corresponds to geographical regions with very
good propagation conditions. In turn, from Figure 3-28 it can also be observed that there is around 10% of
UE collected measurements with a spectral efficiency lower than 0.5bit/s/Hz that correspond to
measurements collected at specific indoor regions with a very low received signal level in certain times.
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Figure 3-28: Relay-enhanced RAN control - CDF of the spectral efficiency in the indoor locations.

An analysis of the propagation conditions and the spatio-temporal user distribution has been conducted to
illustrate the problematic being addressed. Figure 3-29 presents a map with the spectral efficiency in
bits/s/Hz obtained at the ground floor of the different buildings. This spectral efficiency is calculated
according to (3-1) with the parameters described in Table 3-1 and using the UMa propagation model in [31].
Additionally, Figure 3-30 and Figure 3-31 plot a map of the spatial density, in UEs per square meter, in the
ground floor of the different buildings in two different days. This is calculated as the average normalized time
in which a UE is located at each geographical location.

The results indicate that the user distribution is non-uniform across the campus. Certain buildings exhibit
higher user density than others, and even within the same building, varying user concentrations are observed
on different days. As an example, Building A3 (see building names in Figure 3-27) displays different user
concentrations in the two days represented in Figure 3-30 and Figure 3-31, while Building B6 consistently
exhibits elevated and sustained user density in both days. When considering the user density in these
buildings jointly with the spectral efficiency map of the campus, it is observed that the propagation
conditions in Building A3 allow users to experience good levels of spectral efficiency (see Figure 3-29). In
contrast, users in building B6 are likely to experience significantly lower spectral efficiency values in an area
with sustained high traffic levels, which could result in the presence of a CH.
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Figure 3-29: Relay-enhanced RAN control - Map of the spectral efficiency (bits/s/Hz).
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Figure 3-31: Relay-enhanced RAN control - Map of the user spatial density (UE/m2) in day 14.

Table 3-3 provides the list of the CHs identified with a repetitiveness higher than 10%. The CH repetitiveness
was defined in D4.2 as the percentage of time in which the user density in the CH is higher than a specific
threshold. A high CH repetitiveness indicates that a relatively large number of UEs are located inside the CH
region in a large percentage of time. The CH characterization presented in Table 3-3 includes the centroid
geographical coordinates, the building and the floor where each coverage hole is detected (ground floor is
represented with 0), the coverage hole radius and its repetitiveness. Moreover, Figure 3-32 illustrates the
geographical locations of the CHs. Note that the identified CHs correspond to geographical regions with poor
spectral efficiency (see Figure 3-29) with sustained traffic levels in a relatively large number of time periods
(e.g. CH_4 in B6 building). It is worth noting a very large repetitiveness in coverage holes CH_2 and CH_3
with a relatively high traffic level in more than 30% of the total observed time (which includes time periods
at nights and in weekends).

Table 3-3: Relay-enhanced RAN control - Validated Coverage Holes

Centr0|d Radlus Repetltlveness

CH_1 (60,44] C1 (floor 1) 2291
CH_2 (77,41] C1 (floor 0) 8 43.75
CH_3 [67,75] B1 (floor 1) 5.5 32.29
CH 4 [318,75] B6 (floor 0) 9.11 12.50
CH_5 [72,74] B1 (floor 0) 7.13 15.62
CH_6 [178,42] C3 (floor 0) 8.26 14.58
CH_7 [85,105] A1 (floor 0) 5.4 11.45
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Figure 3-32: Relay-enhanced RAN control - Identified CHs and fixed relay locations to address them.

3.3.2.2 candidate RUE identification

This section explores the availability of UEs to serve as RUE to mitigate the identified CHs. For this purpose,
the candidate RUE identification process described in BeGREEN D4.2 has been executed in the considered
scenario.

Table 3-4 shows the percentage of time with at least one available UE to serve as a RUE for each CH. A UE is
considered to be available to become RUE if the RSRP from the best serving gNB is higher than Thgsge=-90dBm.
Table 3-4 also shows the average number of simultaneous UEs available to serve as RUE. These two metrics
are also presented considering only the time periods when each coverage hole is detected. As shown, in
CH_2 and CH_5, there is a high percentage of time with at least one available UE to serve as RUE. A relatively
large number of UEs available to become RUE is also observed in these CHs. This indicates that it may be
feasible to rely on RUEs to address CH_2 and CH_5. In turn, note that the RUE availability in CH_4 and CH_6
is very low, which suggests the necessity of the deployment of fixed relays for these CHs.

Table 3-4: Relay-enhanced RAN control - Statistics of UE availability to serve as RUE

Percentage of time with at least Average number of simultaneous
one available UE to serve as RUE. available UEs to serve as RUE
All time periods Only CH periods | All time periods | Only CH periods
CH_1 69.42 74.76 3.05 3.50
CH_2 85.26 85.74 4.20 4.25
CH3 50.64 54.94 ' 2.72 ' 2.85
CH_4 23.95 45.83 1.74 1.79
CH5 84.42 96.01 ' 3.48 ' 4.59
CH_6 11.80 22.98 1.31 1.44
CH_7 31.79 56.38 9.18 10.40

3.3.2.3 Impact of the different RUE activation policies

This section presents the UE performance when considering the different RUE activation policies. The RUE
activation process is in charge of deciding dynamically which of the candidate RUEs are activated. For this
purpose, the RUE activation process checks the availability of the different candidate RUEs to address the
different CHs. Only candidate RUEs with an average RSRP from the serving gNB higher than a threshold
Thrsrr=-90dBm are considered to be available to serve as RUE. Other conditions may also be included to
check the candidate RUE availability (e.g. battery level higher than a threshold, etc.). Then, the RUE activation
process determines the RUE(s) that are activated to address each CH. Different policies can be considered:

1. Activation of the RUE with the best spectral efficiency. This policy activates the available candidate
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RUE with the highest spectral efficiency from the best serving gNB. This policy aims to maximise the
capacity of the gNB-RUE link.

2. Activation of the RUE with the highest presence: This policy activates the available candidate RUE
that spends more time in the area, with the aim to minimise the number of RUE changes and, as a
consequence, reduce the signalling associated to the RUE activation/deactivation. For this purpose,
an active candidate RUE remains active until it becomes unavailable (e.g. until the UE moves to a
different region or the UE ends its connection). In case that the active candidate RUE becomes
unavailable, then the policy searches a new available candidate RUE to be activated. This is done by
sorting the available candidate RUEs in a ranking according to their presence, i.e. the percentage of
time in which a specific UE is present in the specified square area, defined in BeGREEN D4.2. Then,
the RUE with the highest presence is activated.

3. Activation of all the candidate RUEs that are simultaneously available. In this case, all the available
candidate RUEs are activated. This policy may improve the coverage/capacity at the CHs at expense
of a higher power consumption. However, this solution would require the implementation of
mechanisms to manage the possible interference among active RUEs (e.g. by coordinating the RUEs
transmissions in the time domain or by using different frequency bands for each RUE).

In particular, Figure 3-33 shows the percentage of time with spectral efficiency observed by the UEs below
0.5bits/s/Hz. This metric is calculated for all the UEs located in the same building and floor of each identified
CH. As shown in Figure 3-33, activating all the candidate RUEs that are available simultaneously does not
lead to a clear improvement with respect to the activation of just one candidate RUE. The rationale is that
the obtained coverage hole regions are relatively small when compared to the coverage area provided by a
RUE. Then, the activation of just one RUE becomes enough to address the coverage hole without the need
of activating additional RUEs at the same time.

Moreover, for the policies that activate just one RUE,

Table 3-5 shows the average spectral efficiency in the gNB-RUE link and the average number of different
activated RUEs during the day for both policies. The policy that activates the RUE with the best spectral
efficiency provides a slightly better spectral efficiency perceived by the UEs (see Figure 3-33). The rationale
is that this policy allows a better spectral efficiency in the link between the gNB and the RUE (see

Table 3-5). However, an increase in the number of different active RUEs per day is observed (see

Table 3-5), which may lead to an increase in the signalling related to the RUE activation/deactivation
processes.
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Figure 3-33: Relay-enhanced RAN control - Percentage of time with spectral efficiency observed by the UEs below
0.5bits/s/Hz in the different CHs regions.

Table 3-5: Relay-enhanced RAN control - Comparison of the RUE activation policy.

Activation of the RUE with the highest spectral
- efficiency g : Activation of the RUE with the highest presence

Avg. spectral efficiency Avg. number Avg. spectral efficiency Avg. number of
observed by the RUE | of different RUEs per day = observed by the RUE | different RUEs per day
CH_1 1.96 5.95 0.96 1.80
CH_2 2.30 9.09 1.97 1.09
CH_3 1.71 6.33 1.60 3.19
CH_4 0.82 5.14 0.66 3.09
CH_5 1.67 9.09 0.80 0.38
CH_6 0.97 0.85 0.57 0.85
CH_7 3.26 11.66 2.28 5.71

3.3.2.4 Performance comparison of the different solutions

To gain insight into the potential capabilities of relays/RUEs to mitigate the CHs, this section presents a
comparison of different spectral efficiency statistics observed by the UEs in the different CHs, for the
benchmark case when no relays are considered, the case of deploying fixed relays and the case of using RUEs.
For the case of RUEs, the RUE activation policy is the one that activates the available candidate RUE with the
best spectral efficiency in the gNB-RUE link. Regarding the use of fixed relays, the relay placement algorithm
described in BeGREEN D4.2 has been executed in order to identify the best location to place a fixed relay to
address each CH. The obtained fixed relays locations are presented in Figure 3-32.

Focusing first on coverage hole CH_2, Figure 3-34 shows the CDF of the UE spectral efficiency observed in
the geographical locations in the same building and floor where CH_2 is located (i.e. ground floor at Building
C1). As shown, when no relay is deployed, the spectral efficiency is below 0.5bit/s/Hz in 40% of the UE
reported measurements. The deployment of a fixed relay R_2 to address CH_2 (see Figure 3-32) clearly
improves the spectral efficiency in this region (i.e. the percentage of UE measurements with spectral
efficiency below 0.5bit/s/Hz is around 1.6%, as shown Figure 3-34). It is also worth noting that, for the case
of deploying the fixed relay R_2, in 40% of the measurements, the spectral efficiency observed by the UEs is
limited by the spectral efficiency in the link between the gNB and the fixed relay, and corresponds to 5.8
bits/s/Hz, as shown in Figure 3-34. In the case of using RUEs to address CH_2, the obtained CDF of the spectral
efficiency observed by the UEs is also presented in Figure 3-34. The performance with RUEs basically depends
on the availability of UEs to serve as RUE (note a high UE availability in CH_2, around 85%, as shown in Table
3-4) and the spectral efficiency in the links gNB-RUE and RUE-UE.
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Figure 3-34: Relay-enhanced RAN control - CDF of the spectral efficiency (bits/s/Hz) observed by the UEs in the
region of CH_2 (i.e. ground floor of Building C1).
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Figure 3-35: Relay-enhanced RAN control - Average UE spectral efficiency observed by the UEs.
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Figure 3-36: Relay-enhanced RAN control - Percentage of UE measurements with spectral efficiency below
0.5bit/s/Hz in the region of each CH.
The previous results have been extended for the different CHs regions. Figure 3-35 presents the average UE
spectral efficiency and Figure 3-36 shows the percentage of UE measurements with a spectral efficiency
lower than 0.5bit/s/Hz. As shown in Figure 3-35 and Figure 3-36, the deployment of fixed relays at the
locations shown in Figure 3-32 clearly provides the best spectral efficiency statistics.

In some coverage holes such as CH_2 and CH_5, the use of RUEs leads to significant improvements with
respect to the case of no relays (see Figure 3-35 and Figure 3-36) because of a relatively high presence of
available UEs to serve as RUE (see Table 3-4) and a relatively good spectral efficiency in the links gNB-RUE
and RUE-UE. The obtained performance with RUEs in CH_2 and CH_5 is not so good as in the case of fixed
relays but the use of RUEs is a cost-effective solution in terms of CAPEX. It is also worth mentioning that the
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performance of RUEs in CH_4 and CH_6 is very similar to the case of no relays (see Figure 3-35 and Figure
3-36) because of the low availability of UEs to serve as RUEs in these regions (see Table 3-4).

Considering a performance requirement of providing a spectral efficiency higher than Thspe=0.5bits/s/Hz in
P=90% of the time, it can be observed from Figure 3-36 that the use of RUEs can satisfy this requirement in
CH_1, CH_2 and CH_5. However, the deployment of fixed relays becomes necessary in CH_3, CH_4, CH_6
and CH_7 to satisfy this performance requirement. Then, the solution that combines the deployment of fixed
relays and the use of RUEs (i.e. the FRR solution described in section 3.3.2), considers the mitigation of CH_1,
CH_2 and CH_5 by means of RUEs and the deployment of fixed relays to address CH_3,CH_4,CH_6and CH_7.

3.3.2.5 Power Consumption evaluation

This section aims to provide a comparison of the different CH mitigation solutions by means of relays in terms
of power consumption. As shown in the previous section, better values of spectral efficiency can be obtained
when using relays/RUEs, because of the more favourable propagation conditions in the involved links. This
will have a relevant impact in the number of required RBs to satisfy the UE bit rate demands and, as a
consequence, in the power consumption, because the transmitted power is proportional to the number of
occupied RBs, see equations (A1-7) and (A1-9) in Appendix 1.

To illustrate this, first, Figure 3-37 presents the CDF of the percentage of RBs used in gNB2 for the different
solutions, namely the benchmark case when no relays are considered (BNR), the solution based on fixed
relays and RUEs (FRR) and the solutions based on deploying fixed relays (FRAO that keeps the fixed relays
always on and FROO that switches off the fixed relays with no UEs to serve). These solutions consider the
same fixed relays and/or RUEs of previous sub-section. The considered UEs required bit rate is rp,=4Mbits/s.
As shown in Figure 3-38, the use of fixed relays (note that both FRAO and FROO give the same result) clearly
reduces the amount of RBs used in gNB2 with respect to the case of no relays. The FRR solution provides a
result close to the case of fixed relays. Although not presented here, it has been observed that the RBs
occupancy in gNB1 and gNB3 is much lower than in gNB2, because gNB2 is the one that serves most of the
users in the considered scenario.

CDF of the percentage of RBs used

0.8

0.6

0.4 ——Benchmark, no relays (BNR)
=4 Fixed relays (FRAO/FROO)
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Figure 3-37 Relay-enhanced RAN control - CDF of the power saving with respect to the benchmark BNR.
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Figure 3-38 Figure 3 38: Relay-enhanced RAN control - RB occupancy at gNB2.
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Figure 3-39: Relay-enhanced RAN control - Average value of Power saving (%) of the different solutions for different

UE required bit rate.
Figure 3-38 presents the CDF of the power savings obtained with the different proposed solutions with
respect to the BNR. The considered power consumption model parameters in Figure 3-38 correspond to
combination C2 in Table 3-1. As shown, the FROO solution always provides a positive value of power saving
with respect to the benchmark BNR. Although not shown in the Figure, it is worth mentioning that the power
consumption in the benchmark case (BNR) can be up to 850W. The FROO solution can reduce this power
consumption to 400W, which represents a power saving of 450W that corresponds to a reduction of 53%
(see percentile 99 in Figure 3-38). The FRR solution based on fixed relays and RUEs provides power savings
close to FROO.

In the case of FRAO, there is a 45% of the time in which the power saving is negative (i.e. the power
consumption with FRAO is higher than BNR). This corresponds to the percentage of time in which there are
no UEs served by the fixed relays. In these periods in the FRAO solution, the 7 fixed relays remain switched
on (each of them consuming a power Py z=6.8W) leading to a power consumption 47.6W higher than BNR.
As shown in Figure 3-38, the power saving with FRAO can be up to -30% with respect to BNR. Switching off
the fixed relays with no UEs to be served (i.e. FROO solution) clearly provides benefits in terms of power
savings. Focusing on average terms, the average power saving with the deployment of relays with respect to
BNR ranges between a 14% for the case FRAO and a 25% for the case FROO.

Figure 3-39, illustrates the average percentage of power savings of the different solutions with respect to
the benchmark BNR, for different UE required bit rates. As shown, for low values of the bit rate, the power
savings are relatively low. Even negative values are obtained for the case of FRAO. The reason is that the
power savings (obtained due to the better propagation conditions when deploying fixed relays with respect
to BNR case) are lower than the power consumption of the relays. In turn, when the bit rate increases, the
average power savings obtained with relays also increase, reaching values of 35-40% for r,=16Mbits/s. The
power saving of the FRR solution is very close to the case of FROO for low values of the bit rate. However,
when increasing the bit rate, the lower spectral efficiencies provided by the RUEs increase the required
transmitted power and the power consumption with respect to FROO, which results in lower power savings
of FRR. In any case, it is worth noting relevant power savings of FRR with respect to BNR, especially when
UEs demand higher bit rates.

Figure 3-40 illustrates the impact of the different combinations of the power consumption model parameters
considered in Table 3-2. For this purpose, the average value of the power savings of the different relay-based
solutions with respect to the BNR case of no relays have been determined for the different parameter
combinations. The impact of different values of the UE required bit rate is also presented in Figure 3-40a. As
shown in Figure 3-40a, the FROO solution provides positive values of power saving with respect to BNR in
almost all the combinations of power consumption parameters. Higher power savings are obtained for
higher values of the UEs required bit rate. In particular, as shown in Figure 3-40a, if r,=16Mbits/s, the average
power saving of FROO ranges between 15% for combination C5 and 40% for combination C2.
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Figure 3-40: Relay-enhanced RAN control - Impact of the power consumption model parameters in the obtained
power saving (%) with respect to the case of no relays.

The FRR solution (see Figure 3-40b) also provides promising results in terms of power savings (close to the
FROO solution), and avoids the necessity of deploying fixed relays in some specific regions (namely CH_1,
CH_2 and CH_5) with available UEs to serve as RUE. Finally, note also from Figure 3-40c, that the FRAO
solution only provides positive power savings in combinations C1 and C2 with bit rates higher than 8Mbits/s,
while negative power savings are observed in most of the combinations. This indicates the relevance of
switching off the fixed relays when they are not necessary.

3.3.3 Conclusions

Previous sections have presented an evaluation of the different relay control functionalities described in
BeGREEN D4.1 and D4.2, namely, the coverage hole detection, the candidate RUE identification, the fixed
relay placement and the relay activation/deactivation functionalities. This evaluation has been done in terms
of the UE spectral efficiency and also in terms of power consumption. The proposed algorithms have been
executed in a realistic scenario that is fed with a real space/time UE geographical location distribution.

For the different identified CH regions, the UE performance achieved with a solution based on RUEs has been
compared to the case of no relays and the case of deploying fixed relays. According to the obtained results,
the solution based on fixed relays provides a clear improvement in terms of UE performance with respect to
the case of no relays. The performance obtained with RUEs is subject to the availability of UEs to serve as
RUE, and the spectral efficiency in the gNB-RUE and RUE-UE links. In some of the identified CHs, the RUE
availability is rather low and, as a consequence, the performance of the RUE based solution is very close to
the case having no relay. In such situations, the deployment of a fixed relay would be required. In contrast,
in other CHs with higher candidate RUE availability and acceptable spectral efficiency in the gNB-RUE and
RUE-UE links, the use of RUEs may allow a performance close to the case of fixed relays in a most cost-
efficient way. According to this, a FRR solution that combines the use of RUEs, to address CHs with high RUE
availability, and the deployment of fixed relays to mitigate the rest of the CHs has been proposed. In the
considered scenario, this FRR solution guarantees a spectral efficiency higher than 0.5bits/s/Hz in more than
90% of the time for all the CHs regions, and reduces the number of fixed relays to be deployed, which leads
to a CAPEX reduction.

From the point of view of power consumption, different relay-based solutions have been evaluated. It is
found that the deployment of fixed relays that are switched off when no UEs are to be served (FROO solution)
provides positive power savings with respect to BNR in almost all the considered situations. The power
savings depend on the required bit rate and on the parameters of the power consumption model. In
particular, for r,=16Mbits/s, the average power saving with respect to BNR ranges between 15% and 40%,
for combinations C5 and C2, respectively. In turn, when the fixed relays are always on (FRAO solution) the
power savings are considerably worse, which indicates the importance of switching off the fixed relays when
they are not necessary. Finally, the FRR solution that combines the use of both fixed relays and RUEs shows
promising results in terms of power savings, close to the FROO solution.
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3.4 Traffic-aware compute resource management to enhance UPF EE

Virtualization and softwarization of 5G network functions have accelerated the use of general-purpose
hardware and commercial off-the-shelf (COTS) equipment for deploying 5G RAN and Core networks.
However, this flexibility often compromises EE, particularly for traffic-intensive components like the UPF.
While the Data Plane Development Kit (DPDK) offers substantial improvements in packet processing
performance within UPFs, it also leads to higher energy consumption due to the heavy reliance on CPU
resources.

As was presented in BeGREEN D4.2 [2], in BeGREEN we have addressed these challenges by proposing
practical strategies to dynamically allocate CPU resources in DPDK-based UPFs according to traffic demands.
In this section, we first complete the experimental characterization started in D4.2 regarding the trade-offs
between energy consumption and performance under varying workloads, including the impact of uncore
frequency scaling, which manages components such as the Last Level Cache (LLC) and Integrated Memory
Controllers (IMC). These analysis leads to the proposal of different load-aware CPU allocation policies, which
are applied to a scenario using real traffic statistics from a Spanish Mobile Network Operator. We then
discuss the application of Al/ML-based traffic prediction to drive the application of these policies, providing
a comparative analysis of different models and heuristics.

3.4.1Experimental characterization

In BeGREEN D4.2 [2] we presented the main features and components of the evaluated DPDK-based UPF.
The OAI UPF-VPP¥ is an open-source implementation of the 5G Core UPF (Release 15 & 16) based on both
Vector Packet Processor (VPP) v21.01 [39] and DPDK v20.11. For clarification purposes, let us summarize
below the relevant concepts and procedures impacting its performance. Figure 3-41 illustrates its high-level
architecture:

e The UPF-VPP runs on top of kernel bypass technologies such as DPDK, which uses a Poll Mode Driver
(PMD) that employs busy-polling to access NIC descriptors without interruptions (1 and 5 in Figure
3-41). VPP handle packets in batches, enabling accelerated packet processing in the user space (2
and 6). The vector processing nodes perform the N3/N6 GTP decapsulation/encapsulation and the
forwarding to the N6/N3 interfaces (3 and 7). The output node will finally forward packets to the
required NIC interface (4 and 8).

e VPP handlers packet processing and NIC polling through worker threads. Additional threads are used
to scale packet processing capabilities, enabling VPP to handle higher traffic loads and match the
speed of the available NICs without incurring in traffic losses.

e PMD utilization leads to full CPU usage regardless of the network load, resulting in high energy
consumption and lower energy efficiency during off-peak periods. Initial results for the performance
and energy consumption of the UPF-VPP under default CPU governors are shown in Figure 3-42. The
powersave governor algorithm reduces CPU frequencies to the minimum configured value (1 GHz in
this case), decreasing energy consumption but penalizing performance (maximum of 23.6 Gbps) due
to worker capacity saturation. On the contrary, the performance governor scales CPU frequencies
up to the maximum configured value (2.7 GHz in this case), maximizing performance (up to 35 Gbps)
but significantly increasing energy consumption, even during idle phases without traffic. As shown
in Figure 3-42b, energy consumption is also heavily influenced by CPU frequency when scaling up
the number of threads.

10 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
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Figure 3-43: UPF-VPP - CPU resource allocation schema

The results highlight the need for energy-efficient CPU resource management according to traffic load. Three
main strategies are considered, as illustrated in Figure 3-43:

e CPU frequency scaling: Although it is not possible to modify DPDK's PMD behaviour, which
exhaustively uses CPU resources, P-states policies in the operating system can be applied to
dynamically adjust CPU frequencies according to the incoming load on the NICs.

e Uncore frequency scaling: The built-in algorithm responsible for scaling the uncore frequency of
Intel processors mainly considers the workload and the frequency of active cores [40][41]. However,
increasing the uncore frequency does not always benefit packet processing on the UPF and may
instead result in an energy consumption penalty. Adjusting the uncore frequency in the operating
system to align with UPF requirements can help mitigate this issue.

e NIC-Worker allocation: The processing capacity of the DPDK-enabled NICs can be dynamically
adjusted by allocating NIC's RX queues to workers, which directly impacts the utilization of worker-
CPU resources. A NIC with increasing traffic demand can rely on multiple RX queues to use additional
workers and CPUs. Using low-frequency cores in such scenarios could further optimize energy usage
compared to relying on a single high-frequency core. Conversely, if a worker or core is not needed
during a specific period, it can be reallocated to other NICs in the UPF or temporarily disabled.
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The impact of these strategies on EE is experimentally evaluated by means of the testbed illustrated in Figure
3-44. The UPF-VPP is the Device Under Test (DUT) deployed on an X11SDV-4C-TP8F-01 server with a
processor Intel Xeon(R) D-2123IT @2.2GHz (4 cores) with a Thermal Design Power (TDP) of 60W. The UE and
RAN domain is based on PacketRusher?!, an open-source tool that emulates gNB and UEs, enabling high-
performance testing of the control and user planes in 5G Core Networks. The Core domain includes the
Open5Gs control plane and the DPDK-based UPF-VPP. Finally, the Application Server domain includes two
Iperf3 servers used for generating bidirectional TCP traffic towards the UEs. The performed tests always
involved balancing the traffic load among available NICs, AS, and UEs.

The energy consumption of the server hosting the UPF is measured during tests duration using powerstat??,
a Linux tool that utilizes the Running Average Power Limit (RAPL) [42] feature of Intel processors to report
energy consumption across different power domains (i.e., CPU package, DRAM, etc.)

3.4.1.1 Experimental validation

First, as was reported in BeGREEN D4.2 [2], we analysed the impact of CPU frequencies on maximum or
saturation throughput achievable and on the corresponding energy consumption. As shown in Figure 3-45a,
the saturation throughput increases linearly with core frequency until reaching the NICs line limit of
approximately 35-37 Gbps. Figure 3-45b depicts how the energy consumption increases with processed
traffic and core frequency, highlighting how load-aware CPU frequency tunning can enhance energy
efficiency. For instance, a core frequency of 1 GHz can process 10 Gbps of traffic using approximately 30%
less energy than operating at 2.7 GHz (i.e., using the performance governor). Note however, that the
improvement reduces with increasing throughput due to knee points observed at non-turbo frequencies (i.e.,
under 2.2 GHz).

11 https://github.com/HewlettPackard/PacketRusher
12 https://github.com/ColinlanKing/powerstat
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Figure 3-46: UPF-VPP - Impact of fixed uncore frequency. (a) Throughput and Energy Consumption. (b) Delay.

In our last analyses we have found that these knee points are caused by the uncore, which increases its
frequency triggered by workload demands, as managed by the default uncore scaling algorithm in Intel
processors. In particular, we monitored that at core frequencies below turbo levels, the uncore frequency
remained at its minimum of 1.2 GHz for traffic loads under 12 Gbps. Between 12-25 Gbps, the uncore
frequency scaled to 1.8 GHz, and for traffic loads above 25 Gbps, it reached its maximum value of 2 GHz.
Conversely, turbo frequencies always operate at maximum uncore frequency due to PMD activity, resulting
in a linear increase in energy consumption with traffic load, as shown in Figure 3-45b.

This default behaviour of the uncore leads to a significant increase in energy consumption at low loads.
Therefore, we evaluated whether tuning uncore frequency can also enhance energy efficiency. Concretely,
we fixed it to the minimum value of 1.2 GHz using available Linux commands (i.e., setting the
intel_uncore_frequency file in the /sys directory) and repeated the characterization illustrated in Figure
3-45b. As show in Figure 3-46a, this configuration eliminated the knee points observed at non-turbo
frequencies, resulting in a linear increase in energy consumption with throughput, while significantly
reducing the energy consumption across all core frequencies (e.g., 8W in the case of turbo frequencies).

Since the uncore manages access to the LLC cache, we also analysed a possible impact on latency in the user
plane due to cache misses. We measured the round-trip delay of 1E6 packets using ultraping tool*® under a
background traffic load between 20 Gbps and 25 Gbps. Obtained results, illustrated in Figure 3-46b, indicate
that a fixed uncore frequency slightly increases the measured latency. Nonetheless, we can conclude that
there is no significant impact on user-plane latency, as the results remain within the range of microseconds.

Once established the impact of core and uncore frequencies, we conducted additional experiments to fully
characterize the contribution of different processes to the energy consumption of the UPF-VPP. First, we
analysed the impact of PMD’s polling operation, comparing the performance governor (Default column in
Table 3-6) with cases where polling was disabled. DPDK polling was disabled through two methods: (i)
Increasing the PMD’s usleep period to its maximum value, which effectively disables polling and affects both
core and uncore processes (“Polling Disabled (usleep)” column), and (ii) Deactivating the DPDK plugin
responsible for RX queue processing, which only impacts core processes (“Polling Disabled (plugin)” column).
Furthermore, two uncore frequency configurations were evaluated: (i) free mode with the performance
governor (2 GHz) and (ii) fixed mode at the minimum value (1.2 GHz). The findings summarized in Table
3-6indicate the following when the performance governor is used: (i) The baseline power consumption of
UPF-VPP is approximately 4 W, (ii) enabling active polling increases power usage by 4 W in idle conditions
for core processes, and (iii) active polling contributes an additional power consumption of 4 W to 12 W for
uncore processes, depending on the uncore frequency. It is important to highlight that the power impact
described in point (ii) varies according to traffic load and core frequency, as shown in Figure 3-46.

13 https://github.com/mrahtz/ultra ping
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Figure 3-47: UPF-VPP - DRAM energy consumption. (a) Idle status, with and without polling. (b) Busy status.

Table 3-6: UPF-VPP - Impact of DPDK Polling on Energy Consumption Using the Performance Governor

Default Polling Disabled Polling Disabled Baseline Server Uncore
(plugin) (usleep) (UPF stopped) frequency

36.11 W 32.20 W 20.28 W 16 W 2 GHz (Default)

28.64 W 2479 W 20.19 W 16 W 1.2 GHz (Min)

We also analysed DRAM energy consumption as a function of load and CPU frequency. Figure 3-47a
illustrates how DPDK polling affects DRAM energy consumption at both low and high CPU frequencies when
the UPF is idle. Note that the energy penalty is significantly higher at turbo frequencies, contributing to the
overall penalty of using high frequencies in worker threads observed in previous experiments. Additional
tests were performed using a fixed uncore frequency, but no noticeable impact was detected. This suggests
that the metric reported by powerstat tool is primarily associated with DRAM activity resulting from the
server’s workload. We also evaluated DRAM energy consumption under varying workloads, which rises
linearly with increasing input load across different CPU frequencies as shown in Figure 3-47b.

To complement the analysis done in BeGREEN D4.2 [2] regarding multi-threading scenarios, we realized
additional experiments fixing the uncore frequency. Therefore, we characterized UPF performance across
different NIC-worker combinations under different workloads, core frequencies and uncore frequencies.
Figure 3-48 presents three different configurations: (a) a single worker managing all NICs, as discussed in
previous sections; (b) one worker assigned to each pair of NICs; and (c) one worker dedicated to each NIC.
For simplicity, the figure assumes all cores are operating at the same frequency. However, alternative
configurations have also been evaluated, which may offer slightly improved performance.

The results emphasize the effectiveness of the fixed uncore policy (Usx cases), which consistently reduces
energy consumption across all configurations. Additionally, comparing various threading configurations
reveals that, in some scenarios, using two or four threads at low frequencies provides slightly better energy
efficiency than a single thread operating at higher frequencies. For example, at a core frequency of 1 GHz,
where throughput reaches 35 Gbps with two or four cores, the number of threads has minimal impact on
energy consumption. This validates the multi-threading approach not only as a way to achieve higher
throughputs but also to decrease energy consumption.

It is worth noting that the latest DPDK versions support dynamic RX-queue reallocation, allowing runtime
RX-queue creation for already established workers. However, the UPF-VPP version used in our tests only
supported reallocating pre-created RX-queues. This feature will be key for dynamically managing NIC-worker
allocation based on changing load conditions.

3.4.1.2 Application to realistic traffic scenarios

Building on the findings from the previous section, we introduce a set of adaptive CPU allocation policies
designed to optimize energy consumption under realistic traffic conditions. To evaluate their impact, we
analysed the possible energy savings according to the traffic pattern of a dataset from a Spanish MNO. This
dataset captures uplink and downlink throughput data from the Packet Data Network Gateway (P-GW) in a
specific region of Spain, covering hundreds of cells over several months, with a 15-minute time granularity.
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Figure 3-49: UPF-VPP - Throughput forecast and estimated energy consumption of the DUT server, assuming no NIC
limitations.

Due to NIC limitations, the DUT was unable to sustain the peak throughput observed in the dataset. To
address this, we estimated the necessary CPU resources to accommodate the traffic demand. Specifically,
we consider the linear relationship between throughput, energy consumption and CPU frequency
characterized in the previous section, which is illustrated in Figure 3-49. According to it, achieving the
dataset’s peak aggregated throughput of 120 Gbps would require a minimum of three cores and worker
threads. We assume the incoming load is evenly distributed across all available interfaces, which, for the
DUT, could be either 100 or 50 Gigabit Ethernets.

Next, we define a formula to estimate energy consumption based on the forecasted traffic and allocated
CPU resources, derived empirically from measurements described in the previous sections. Given that the
UPF is deployed with N cores and worker threads, the total energy consumption of the server hosting the
UPF under a load L can be expressed as follows:

N
ECtotal (L) = z EC[};;;'_f\zérkers (Li) + ECUPF,base + ECserver (3'6)
i=1

where EC{;;"F’ﬁérkers(Li) is the energy consumed by CPU i at core frequency fc and uncore frequency fu;
assigned to a worker thread in the UPF-VPP to poll and process a portion L; of the total load L, ECupe pase is the
baseline consumption of the UPF-VPP (approximately 4 W for the DUT), and ECsever is the energy consumed

by the server for other operations (approximately 16 W for the DUT). EcTeult (L;) includes any energy
l

UPF,workers
consumed by the system to process the load L;, which we found to increase linearly with the load under a

fixed uncore frequency as was shown in Figure 3-46. This is consistent with state-of-the-art models, such as
the linear CPU-dependent model, which predicts power consumption based on the host's CPU utilization
[43]. Also, note that in multi-socket servers, the assigned CPUs could have different uncore frequencies.

The CPU allocation policies outlined in Table 3-7 are designed to enhance energy efficiency by dynamically
adjusting CPU resources (i.e., CPU frequency, the number of active CPUs, and the uncore frequency) based
on traffic patterns. Using these policies and the observed traffic, we applied (3-6) to calculate energy
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consumption and compared the results to a non-optimized scenario where three CPUs are overprovisioned
at maximum frequency to accommodate peak throughput. For simplicity, the defined policies categorize
traffic into throughput ranges and assign a uniform frequency to all CPUs within each range. However, a
more granular approach could be implemented to achieve further energy savings.

Table 3-7: UPF-VPP - Defined CPU Allocation Policies Based on Total Throughput

Policy Configuration Throughput Limits (Gbps)
P1 1CPUat 1 GHz <23
P2 1 CPU at 1.8 GHz 23 < xr<38.59
P3 2 CPUs at 1 GHz 38.59< x<46.3
P4 2 CPUs at 1.4 GHz 46.3<r<61.74
P5 3 CPUs at 1 GHz 61.74< ¥< 69
P6 3 CPUs at 1.9 GHz 69<xr<120

Figure 3-50 illustrates the results for a specific day, showing the energy consumption of the default policy (in
orange) compared to the optimized policies (in blue). The gap between the two trends highlights the
substantial energy savings achieved through traffic-aware CPU allocation. Notably, the dataset exhibited a
highly regular weekly traffic pattern, leading to consistent results across different days. Based on these
findings, the proposed approach can reduce energy consumption by an average of 30%, equating to
approximately 11 kWh over a week for this DUT.

These results consider a prior or oracle-based knowledge of the traffic trends. In the following section we
will analyse the impact of simple heuristics and of traffic forecasting on the achievable energy savings,
providing a more realistic implementation of this approach.

3.4.2 Al/ML-driven traffic-aware policy management

In this section, we explore the benefits and considerations of applying two different ML models for
forecasting input UPF traffic for policy management. Specifically, we consider the FB Prophet and the
XGBoost frameworks. FB Prophet is an open-source time series forecasting tool based on an additive
regression model'*. On the other hand, Extreme Gradient Boosting (XGBoost) is a high-performance,
distributed machine learning library designed for gradient-boosted decision trees (GBDT)®. XGBoost
supports parallel tree boosting and is widely used for regression, classification, and ranking tasks due to its
scalability and efficiency. The following section provides a more detailed description and validation of each
model.

3.4.2.1 Model validation

FB Prophet was developed by Facebook for time series forecasting. The time series, y(t), can be decomposed
into multiple components as follows:

y(@) =g(t) +s(t) + h(y) + &

In this formulation, g(t) represents the trend function, capturing non-periodic variations in the time series.
The term s(t) accounts for periodic fluctuations, such as weekly or annual seasonality. The function h(t)
models the influence of holidays, which may occur irregularly over varying durations.

14 https://facebook.github.io/prophet/
15 https://xgboost.readthedocs.io/en/stable/python/python intro.html
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Figure 3-50: UPF-VPP - Application of CPU resource allocation strategies to a realistic traffic scenario.

The error term &; encapsulates any stochastic variations not explicitly captured by the model [44]. Prophet
allows forecasting the UPF load for a specific time period based on historical data and identified trends,
without requiring additional input features.

XGBoost can also be used for time series forecasting, which seems a useful approach due to the clear
correlation of load with the time found in our dataset, as was introduced in BeGREEN D4.1 [1]. In the case
of XGBoost, the traffic forecasting model uses lagged values from previous intervals as features. In our case,
we used the most recent value as input for the prediction (i.e., the value of the last 15 minutes interval).

These differences between both models affect their performance in the UPF use case, as analysed below.
For both models, the training period spans one full month, and the testing period also lasts for one month.
As shown in Figure 3-47 and Figure 3-51, both models show similar during a regular week without anomalies;
however, FB Prophet performs worse during an anomalous week in the dataset (referred to as the
'anomalous week' in this section). This performance drop is due to FB Prophet's lacking the inclusion of
lagged load values as input features. Figure 3-52 and Figure 3-53 illustrate in detail the performance during
this week.
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Figure 3-47: UPF VPP - FB Prophet prediction vs Total UPF Throughput (month)
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Figure 3-51: UPF VPP - XGBoost prediction vs Total UPF Throughput (month)
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Figure 3-52: UPF VPP - FB Prophet prediction vs Total UPF Throughput (Anomalous week)
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Figure 3-53: UPF VPP - XGBoost prediction vs Total UPF Throughput (Anomalous week)

Table 3-8 shows the MAE and R? value of both models during the whole month, an average week and the
anomalous week. The MAE results for Prophet show an approximate 8% error (around 10 Gbps) over peak
values. While Prophet is easy to use and deploy, its accuracy tends to degrade when predictions extend
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further from the training window. In our case, Prophet's trend component remains relatively flat over time
due to training on a one-month historical period. This makes it suitable for stable patterns with a consistent
trend but leads to significant errors during periods of abnormal and non-periodic traffic, as is the case of the
‘anomalous week. To improve accuracy in such scenarios, the model would need to be re-fitted, requiring
additional computational resources. In contrast, the XGBoost model, achieves a lower MAE of around 2%
(approximately 2.5 Gbps) over peak values. It maintains stronger accuracy on future testing data without
needing retraining, as it consistently incorporates recent lagged values that capture the latest traffic
dynamics. This makes it less prone to performance degradation. For the anomalous week, XGBoost
performance could potentially be improved further by including additional features, such as the number of
active data users in the UPF or increasing lag granularity.

Table 3-8: UPF-VPP — Comparison of FB Prophet and XGBoost Models

Model ‘ MAE (Mbps) R?

FB Prophet: 1 Month 10669.38 0.717

XGBoost: 1 month 2555.67 0.96

FB Prophet: Average Week 8063.28 0.879
XGBoost: Average Week 1952.19 0.9914
FB Prophet: Anomalous week 16525.44 0.33147

XGBoost: Anomalous Week 4937.25 0.853

3.4.2.2 Model evaluation in the use case

In this section we analyse the impact of the traffic forecasting on the CPU management policies presented
in Section 3.4.1.2. For each model, we computed the saved energy for an average week in the testing month
and for the anomalous week when using the forecasted load to decide on the applied policy. As shown in
Table 3-9, the percentage of saved energy is around the 30% when applying both models, being very close
to the oracle case considered in Section 3.4.1.2. As expected according to previous analysis, FB Prophet
results are worst during the anomalous week.

Table 3-9: UPF VPP — Impact of Model Forecasting on Saved Energy When Applying CPU Management Policies

Energy Saved Energy Saved
(KWh/week) (%)
Average Week
Oracle 11.08 30.39
FB Prophet 10.93 29.97
XGBoost 11.05 30.30
Anomalous Week
Oracle 11.59 33.15
FB Prophet 9.56 27.34
XGBoost 11.31 32.34

However, beyond the energy-saving analysis, it is also important to consider the impact on served

throughput when restrictive policies are applied in this scenario. To this end, we analysed three performance
metrics:

e Correct Policy Allocation: The policy according to forecasted traffic matches the oracle policy, which
is based on the actual observed throughput.

e QOverSLA Policy Allocation: The policy according to forecasted traffic is more conservative than the
oracle policy due to an overestimation of future traffic. This results in higher energy consumption
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compared to the oracle. In this case, we compute the additional energy consumption (EC wasted).

e UnderSLA Policy Allocation: The forecasted policy is more aggressive than the oracle policy due to
an underestimation of future traffic. This leads to under-served throughput, which is also computed.

Table 3-10 shows the results of this analysis for the average and anomalous weeks, showing how XGBoost
outperforms FB Prophet in both cases and in all metrics. Note that the OverSLA decisions usually lead to a
low increase of energy wasted. As discussed in Section 3.4.1.2, applying any CPU management policy results
in significant baseline energy savings compared to the default use case, while the differences between
individual policies are less pronounced for the observed throughput levels in the dataset. Therefore,
erroneous policies do not lead to significant levels of wasted energy except for FB Prophet during the
anomalous week due to its high throughput overestimation, as shown in Figure 3-52. The impact on
throughput due to underestimations is also more pronounced in the case of FB Prophet, as it fails to
accurately capture traffic peaks. On the contrary, the performance of XGBoost is very good even in during
the anomalous week.

Table 3-10: UPF VPP — Impact of Model Forecasting on CPU Management Policies Performance

Energy Under-Served
Model Correct OverSLA Wasted UnderSLA " Throughput

Average week
FB Prophet 76.19 % 14.70 % 0.94 % 9.0% 8.57 %
XGBoost 95.00 % 3.20% 0.20 % 1.6 % 1.30%
Anomalous week
FB Prophet 449 % 50.5% 8.42 % 4.1% 5.30%
XGBoost 86.0% 133 % 0.77 % 0.6 % 0.78 %

Figure 3-54 shows how the policies driven by the different models impact the energy consumption and the
served throughput of the UPF during a selected day in the dataset. As previously discussed, the policies based
on XGBoost predictions closely track the actual traffic trends. In contrast, FB Prophet tends to underestimate
throughput peaks, resulting in reduced energy consumption but at the expense of under-served throughput.

To further reduce UnderSLA errors, we considered applying the MAE obtained during the training phase as
a correction delta added to the forecasted traffic. As shown in Table 3-11, the number of correct decisions
decreases in both cases due to an increase in OverSLA allocations. However, the resulting impact on energy
waste remains minimal, due to the baseline energy savings discussed earlier. On the other hand, UnderSLA
decisions are reduced to below 1% in both cases, which is particularly beneficial for FB Prophet given its
tendency to underestimate traffic peaks.
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Figure 3-54: UPF VPP - Impact of model forecasting on saved energy and throughput when applying CPU
management policies
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Table 3-11: UPF VPP — Impact of Model Forecasting on CPU Management Policies Performance

Energy Under-served
Model Correct OverSLA Wasted UnderSLA e
Average week
FB Prophet 64.8 % 34.2% 2.90 % 0.89 % 0.80 %
XGBoost 89.2 % 10.5% 0.63% 0.14 % 0.14%

Anomalous week

FB Prophet | 33.5% 65.5 % 119 % 0.90 % 111 %

XGBoost 71.2 % 284 % 19% 0.45% 0.58%

3.4.3 Conclusions

The dynamic adaptation of CPU resources to workload requirements is a key strategy for enhancing the
energy efficiency of edge servers hosting network functions, such as the UPF. Throughout the various
deliverables of this Work Package, we have characterized the energy consumption and performance of open-
source UPFs, specifically Open5G and OAl UPF-VPP, when deployed on bare-metal COTS servers under
varying traffic workloads and CPU resource allocations.

The results demonstrate that dynamic management of CPU and uncore frequencies can yield substantial
energy savings without compromising traffic performance, particularly in DPDK-based user planes due to
their consistently high CPU utilization. In this deliverable, we finalized the characterization of these strategies
and explored the application of Al/ML-driven CPU management policies, applying traffic forecasts derived
from a real dataset provided by an MNO. The results highlight the potential of these strategies, achieving
approximately 30% energy savings without impacting the served throughput.

Future work should explore additional techniques, such as leveraging C-states, and the integration of more
advanced Al/ML algorithms, including reinforcement learning.

3.5 Joint orchestration of vRANs and Edge Al services

In this final deliverable of WP4, we evaluate the algorithm proposed in the previous deliverable. We call our
algorithm EdgeBOL. As explained in D4.2, EdgeBOL is an online learning algorithm that solves the contextual
bandit problem defined in D4.2. EdgeBOL identifies a policy that minimizes the aggregate energy costs while
adhering to predetermined performance criteria of the Edge Al services. Our prototype consists of a vBS, a
user equipment (UE), a digital power meter, and an edge server, as shown in Figure 3-55. The vBS and UE
include an NI USRP B210 as radio unit (RU) and a general-purpose computer (Intel NUCs with CPU i7-
8559U@2.70GHz) deploying the near-RT RIC (for the vBS) and the baseband unit (BBU), implemented with
the srsRAN suite (which emulates an 0O-eNB for experimentation). The vBS and UE are connected through
SMA cables with 20 dB attenuators, and we adjust the transmission gain of the RU’s RF chains to attain
different uplink SNR values. Without loss of generality, we set 20 MHz bandwidth for the LTE interface.

Our edge server is equipped with a CPU Intel i7-8700K @ 3.70GHz and a GPU Nvidia GeForce RTX 2080 Ti.
The vBS and server are connected using a switch with Gigabit Ethernet technology. To measure the power
consumption at the BBU and the server, we use the digital power meter GW-Instek GPM-8213 with the
GWiInstek Measuring adapter GPM-001. The evaluated Al service is implemented using Detectron2?®,
developed by Facebook, which performs object recognition.

16 https://github.com/facebookresearch/detectron2
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Figure 3-55: vRAN and Edge Al Services — Experimental Testbed
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Specifically, Detectron2 is configured with a region-based convolutional NN (Faster R-CNN) comprising a
ResNet backbone with conv4 layers and a conv5 head with a total of 101 layers. The UE sends to server
images from the COCO data set we used in previous deliverables through the LTE uplink. The images are
resized at the user side using the OpenCV library in Python. The bounding boxes and object classes are
computed by Detectron2 and sent back to the UEs (LTE downlink).

We introduced two key srseNB modifications. First, we modified the radio MAC scheduler to implement the
two radio policies we presented in D4.2. Secondly, we integrated the O-RAN E2 interface as defined in O-
RAN specifications WG3 to enforce the radio control policies (MCS and airtime) on-the-fly and send
consumed power consumption samples to the corresponding xApp. For the latter, we have added code into
srsRAN to collect this information from the power meter. We have also implemented a proof-of-concept
Near-RT RIC and Non-RT RIC with the interfaces mentioned in D4.2. We configure the GPU speed by using
the Nvidia driver that allows us to set the maximum power management limit, ranging between 100 and
280W. This runtime configuration does not affect the GPU operation. Note that the actual GPU consumed
power depends on its duty cycle.

We consider number of different actions (|H| = |A| = |T'| = |[M| = 11, i.e. H denote the set of possible
image resolutions; A the set of possible airtime configurations, I' the possible GPU speed configurations;
and M the set of all possible MCS policies as defined above); hence there is a large number of | X| = 11* =
14.6 - 103 control policies, which, in combination with the effect of the possible contexts, highlights the need
for a data-efficient learning mechanism. Given the complexity of running experiments with multiple users,
we rely on a single user in most of our experiments (which render trivial low-layer controllers). However,
whenever needed (we test out multiple heterogeneous users later), we adopt simple controllers (e.g. MAC
layer scheduling) that are detailed where relevant. In line with previous works [45][46], we select ,81/2 = 2.5,
which shows good performance in our evaluations. Finally, unless otherwise stated, we will plot our results
with lines and shadowed areas representing, respectively, the median value and the 10th and 90th
percentiles, across 10 independent repetitions.

3.5.1Convergence evaluation

To evaluate the convergence of our approach, we consider a single context and a certain constraint set with
p™™ (minimum mAP performance) and d™® (maximum service delay). Dynamic context changes and
different constraints are evaluated later.
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Figure 3-56: VRAN and Edge Al services - Convergence evaluation. A scenario with steady channel conditions (no
context changes), §;=1 mu/W, p™" = 0.5, and d™* = 0.4s.

Namely, we set the mean SNR to 35 dB (good wireless conditions), §; = 1 mu/W, pmin = 0.5, and d™M#& =
0.4 s. Figure 3-56: plots the evolution over time of the cost (u;), mAP performance (p;), delay (d;), and server
and BS power consumption (p$ and p?) as a function of &,.

The first observation is that the cost u; (top plot) converges within roughly 25 time periods across all §, =
{1,2,4,8,16,32, 64}. Higher §, values induce higher cost as the price associated to each watt consumed by
the BS grows. Remarkably, both the mAP performance and delay fall within the selected system constraints
upon convergence with high probability. In fact, we have observed consistent results (converge speed,
satisfaction of system constraints) irrespectively of the context and system constraints. The system power
consumption presents interesting trade-offs with §,. In particular, small §, (e.g., 5, = 1) induce high power
consumption at the BS but low at the server. This is because the maximum net power consumption of our
virtualized BS (around 7.25 W) is much smaller to that of the server (between 85 to 180 W). Therefore, if the
associated cost (mu/W) is similar for both BS and server, our solution will minimize the power consumption
of the server at the expense of a small energy toll for the BS. However, when &, is relatively high (e.g., §, =
64), the actual cost associated with the energy footprint of the BS becomes comparable, or even higher,
than that of the server.
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Figure 3-57: vRAN and Edge Al services - Power consumption and normalized cost for a single context as a function
of 6_2, with §_1=1 mu/W. Dashed lines represent our exhaustive search approach.

Hence, our algorithm drives the system to configurations that minimize BS power consumption at the

expense of the server energy. This latter case is relevant for situations when a small cell has a stringent power

budget (e.g., solar-powered) or has cooling restrictions. Indeed, different types of BS have different energy

footprint, which motivates the need for approaches that learn the relationship between power consumption

patterns, performance metrics and configuration policies.

3.5.2 Static scenarios

Let us now take a closer look at the power consumption and the respective policies for different constraints
and values of §,. Figure 3-57 shows the power consumption and normalized cost once our solution has
converged for §; = 1 and 6, = {1,2,4,8,32} mu/W. We compute the normalized cost independently for
each §, so we can compare across different §, values. We now test different constraint settings: (i) pmi“ =
0.4, and d™® = 0.5 s (lax constraints), (ii) p™" = 0.5, and d™® = 0.4 s (medium constraints), and (iii)
p™" = 0.6, and d™** = 0.3 s (stringent constraints), represented in red, green, and blue in the figure. In
addition, we represent with dashed lines the cost attainable by an offline oracle, which we obtained using a
time-consuming exhaustive search procedure over the whole control space. Though this approach is
unfeasible in practice, it is a good benchmark to empirically assess the optimality of our algorithm.

Ignoring, for now, the differences across different constraints settings (different colours in the plots), we can
make two observations. First, we can confirm our earlier observation that higher values of §, (compared to
61) steer our solution to shift power consumption from the server to the BS (and vice versa). Second, our
algorithm is able to drive the system to near-optimal points of operation, when comparing the cost of
EdgeBOL with that obtained by our oracle.

In more detail, the figure renders very different behaviour across different constraint settings (colours in the
plot). In the case of pmin = 0.4, and d™®* = 0.5 s (lax constraints, in red in the plot), there is a drastic change
in the selected policies and resulting power consumption as we increase §,. Because these settings are
rather lax, our solution has more leeway to explore (and then select a policy from) a larger space of feasible
policies. This is made evident when we compare its normalized cost with that of the most stringent settings
(d™3 = 0.3 5, p™i" = 0.6, blue line in the figure): for §, = 1, the minimum cost attained by our solution is
25% larger for the latter, and 10% for §, = 64. Moreover, the normalized cost consistently grows, though
with a shrinking gap in cost across constraint settings, as we increase §,. This occurs because, in our testbed,
the range of power values that the BS can consume (across all policies) goes between 4 and 8 W, which is
substantially smaller to that of the server (between 50 and 200 W).
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Figure 3-58: vRAN and Edge Al services - Policies for a single context as a function of 6_2, with §_1=1 mu/W.

As a result, when we increase 65, i.e., when we increase the importance given to reducing BS power, the cost
variance across policies reduces. This may be different with different types of BS such as macro cells.

Finally, Figure 3-58 shows the corresponding control policies for the same scenarios shown Figure 3-57. Let
us first take a look to the lax settings (d™* = 0.5 s, p™" = 0.4 depicted with red lines in the figure).

When §, is small, EdgeBOL imposes low-consuming server-side policies, i.e., low GPU speed policies. This
certainly helps to reduce the server consumption, and the overall cost as a consequence. However, to meet
the performance constraints, our solution has to compensate low GPU speed policies with higher image
resolutions and higher radio policies that ease the job of the service while minimizing delay, which comes at
at the expense of higher BS power consumption. Conversely, when §, increases, our approach selects low-
consuming radio policies and, to compensate, lower image resolutions and higher GPU speed policies that
help reduce service delay. On the other side, for the scenario with most stringent constraints (d™®* = 0.3 s,
pmi“ = 0.6, blue lines), our solution is forced to deal with a smaller space of feasible policies. Therefore, all
policies are roughly consistent across different §, values (with mild differences for the highest settings).

3.5.3Heterogeneous users

In an effort to reduce the problem of the dimensionality, we aggregate statistics of individual users (mean
SNR, variance SNR, etc.) when describing the context. To validate that this design choice does not
compromise optimality, we have performed a series of experiments with multiple heterogeneous users.
Without loss of generality, we adopt simple low-level control mechanism to enforce the selected policies
when allocated resources to individual users: (i) a round-robin radio scheduling approach at the MAC layer
of the BS, (ii) equal image resolution across users, (iii) MCS selection approach legacy of srsRAN [47] (upper
bounded by the policy), and (iv) highest GPU speed to handle individual video frames allowed by the policy.

We train the algorithm with a variable number of heterogeneous users with changing channel quality. Once
trained, we evaluate the performance of our solution in scenarios with a fixed number N of heterogeneous
users. The first user has the best channel conditions (SNR = 30 dB in average) and every additional user has
20% lower SNR. We trivially choose d™3 = 2 and p™" = 0.6 so the system has a feasible solution in the
worst case (with 6 users). Figure 3-59 depicts the cost of the system (as defined in eq. (1)) for scenarios with
different values of N. We do this for different weights §, in the trade-off between the service’s power
consumption and that of the vBS (§; = 1 in all scenarios).
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Figure 3-59: vRAN and Edge Al services - Empirical optimality gap in scenarios with multiple heterogeneous users.
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We compare the performance of EdgeBOL with that of an optimal oracle that finds the best possible
combination of policies offline after an exhaustive search where all the system dynamics are known. Hence,
though it is unfeasible to use in practice, it provides a lower bound cost that helps us assess the optimality
gap of EdgeBOL empirically.

The results show that the performance attained by EdgeBOL is remarkably close to that of the oracle, well
within 2%. Though it is not shown in the plot due to space constraints, EdgeBOL satisfies the service
constraints with probability 0.98. This validates that aggregated statistics across users suffice to provide good
performance yet keeping the problem’s complexity tractable. We can also observe that the overall cost
increases with the number of users. The reason is that, as each additional user has lower SNR, its transmission
time is higher. As a consequence, EdgeBOL is forced to invest more resources (i.e., airtime, GPU speed) in
the system to compensate this degradation of mean wireless conditions.

3.5.4Dynamic scenarios

We now test the performance of EdgeBOL in the presence of fast context dynamics and sudden constraint
changes. To this end, we deploy an untrained EdgeBOL in an environment where the wireless conditions
quickly vary between 5 and 38 dB, as depicted by the first plot in Figure 3-60, and set §; = 1 and §, = 8.
The top right plot depicts the size of the safe control set over time. As expected, the safe set quickly reduces
within roughly 25 time periods and then adapts to the eventual contextual changes, with fluctuations
matching the context changes. Remarkably, EdgeBOL convergences upon only 3 cycles across all contexts
under evaluation. This is possible because the knowledge acquired by EdgeBOL for one context is actually
transferred across similar contexts. That is, EdgeBOL is able to select judicious policies, shown in the
remaining plots of the figure, even for unseen contexts. Specifically, for this choice of § parameters, the GPU
speed policy and the MCS policy highly vary upon context dynamics, whereas the image resolution and the
airtime policy remain consistently high. It is worth mentioning that this policy dynamics is substantially
different for diverse values of § (not shown due to space constraints).

The above illustrates one of the major advantages of our approach, which makes appropriate decisions—
even for contexts unseen before—by inferring correlations between the cost function and the context-
control space. Conventional NN-based approaches are substantially less efficient in doing so, which renders
EdgeBOL a particularly data-efficient solution.

To assess this, we implement a customized version of the deep deterministic policy gradient (DDPG) [48].
This benchmark is inspired by [49], which is the most related work to ours. Since the DDPG is designed to
address the full-RL problem, we need to adapt it to address a contextual bandit problem, according to our
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formulation. The DDPG algorithm uses an actor-critic NN architecture, but the critic, instead of
approximating the Q function (full-RL problem), it learns a new cost function referred to as DDPG cost. The
DDPG cost takes the value of (1) when all the constraints in (2) are satisfied, and the maximum cost value
otherwise. Note that the DDPG does not handle constraints naturally and by using the DDPG cost function
we allow the algorithm to do it. DDPG is particularly appealing for this type of problem because it operates
with continued-valued control spaces. We mildly modified the architecture presented in [6] with a sigmoid
function for the actor’s output and optimized all the hyper-parameters (such as the decay) to minimize
convergence time and performance.

We then test EdgeBOL and DDPG in a dynamic scenario where the constraint settings change over time: (i)
d™ =055, p™" = 0.4 from t = 0 through t = 1000; (ii) d™* = 0.4s , p™" = 0.6 from t = 1000
through t = 2000; and (iii) d™® = 0.5 s, p™" = 0.5 from t = 2000 on. Figure 3-61 depicts the evolution
over time of the service delay and the mAP performance for both approaches. Not surprisingly, EdgeBOL
rapidly converges to policies that respect the performance constraints, even when they suddenly change.
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Figure 3-60: vVRAN and Edge Al services - Evolution of policies for dynamic contexts (6=8).

BeGREEN [SNS-JU-101097083] 104



D4.3 — Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane BEGREEN
DDPG EdgeBOL
5 2501
© 504
0 183 263 3e3
Time period (t)
Z 204
>
T 154
[}
T 1.04
8 054
g 00 !
L2 0 1e3 2e3 3e3
Time period (t)
— 0.6 e e -
= (L
5 04 PRl= === ===
£ 02
0 1e3 263 3e3
Time period (t)
5 204
T 151
o
S 1.01
E‘ 05_ L
8 001 : : .
0 1e3 2e3 3e3
Time period (t)
£05
k=]
. 0.4
5 03
02
& o1
T ool |

0 1e3 2e3 3e3
Time period (t)

Figure 3-61: vRAN and Edge Al services - Evolution of delay and mAP upon changes on the constraint settings for

EdgeBOL and a DDPG approach implemented with NNs (6 = 8).
The non-parametric nature of our approach and the fact that we can compute safe control sets for any
constrained setting based on prior data, allows EdgeBOL to drive the system to the new optimal points of
operations almost instantaneously. In marked contrast, the NN-based benchmark takes a substantially
higher number of time periods to find the new optimal—it is actually unable to converge prior to the
constraint changes—and fails to adapt graciously upon constraint changes because NNs are parametric
models that need to re-learn upon such changes.

3.5.5Conclusions

The energy-aware implementation of Al services at the network edge is increasingly important for
performance, economic and environmental reasons. The previous measurements showed non-trivial trade-
offs between the delay and accuracy of such services, and revealed how these metrics are shaped by the
base station and edge server control policies. In this final deliverable, using a Bayesian learning algorithm,
the identification of a policy that minimises the aggregate energy costs minimised while adhering to
predetermined performance criteria. This framework uses minimal assumptions and is proved effective in
exploring the huge system configuration space. The proposed resource control mechanism is fully compliant
with O-RAN and promising for enabling edge Al services, as it is verified experimentally using a prototype.
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4 Summary and Conclusions

The BeGREEN D4.3 represents the culmination of efforts within Work Package 4, focusing on the final
validation and evaluation of the BeGREEN Intelligence Plane and its Al/ML-driven solutions for enhancing
energy efficiency in Beyond 5G (B5G) and 6G networks. This document builds upon the foundational work
established in BeGREEN D4.1 and D4.2, refining the architecture, methodologies, and use cases to achieve
significant energy savings without compromising network performance.

Key Achievements:

1.

BeGREEN [SNS-JU-101097083]

Intelligence Plane Architecture: The final architecture of the BeGREEN Intelligence Plane integrates
advanced components such as the Al Engine, Non-RT RIC, and Near-RT RIC, along with the novel
application of technologies like Reconfigurable Intelligent Surfaces (RIS), Integrated Sensing and
Communication (ISAC), and cell-free distributed MIMO. This architecture enables cross-domain
optimization and efficient management of RAN and Edge resources, ensuring seamless
interoperability and scalability.

Energy Efficiency Metrics: The Al Engine's Energy Score and Energy Rating functions provide critical
metrics for measuring and optimizing energy efficiency across network components. These tools
allow for absolute and relative assessments of energy performance, supporting data-driven decision-
making for energy-saving strategies.

Al/ML Model Optimization: Comprehensive benchmarks of Al/ML models during training and
serving revealed important trade-offs between energy consumption, CPU usage, and model
performance. Techniques such as feature reduction and CPU frequency management were shown
to significantly reduce energy overhead while maintaining model accuracy. These techniques can be
leveraged by the Model Selection function within the Al Engine to identify and provide the most
energy-efficient model based on specified requirements.

Validation of Solutions: The document details the successful validation of key technologies,
including:

o0 Intelligence Plane: Complementing the work reported in D4.2, we characterized the
performance of the Al Engine under different training and service workloads, providing
insights on EE. We also validated some functionalities, such as the generation of datasets or
the integration of RICs and the Al Engine, which will be further evaluated in the context of
Work Package 5 demonstrations. The Near-RT RIC's conflict mitigation capabilities were
validated, showing a 30% improvement in energy efficiency by resolving conflicts between
energy-saving and QoS policies. Finally, the integration of RIS-enabled ISAC solutions with O-
RAN architectures were also demonstrated, targeting enhanced indoor positioning and
coverage extension

o VRAN: Cache memory is a key resource for vRANs to reduce energy consumption. We
proposed MemorAl which strategically allocates LLC resources to minimize energy
consumption. MemorAl comprises a digital twin and a NN classifier, providing a very efficient
and flexible solution. MemorAl achieves almost optimal performance and can attain
significant energy savings when compared with other strategies.

o 5G Carrier On/Off Switching: Demonstrated the trade-offs between energy savings and
Quality of Service (QoS) in a realistic 5G NSA deployment, with Al-driven strategies achieving
nearly 79% energy savings under low QoS constraints, and over 20% under high QoS
constraints.

o Relay-Enhanced RAN Control: Showed that the deployment of fixed relays and their
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dynamic activation/deactivation achieve power savings in the order of 15%-40%, depending
on the bit rate and the power consumption model, with respect to the case of no relays. The
use of relaying UEs to mitigate some coverage holes provides performance and power
consumption results close to the case of fixed relays and reduces the deployment costs.

UPF Energy Efficiency: Traffic-aware CPU resource management policies reduced energy
consumption by 30% in realistic traffic scenarios, leveraging dynamic core and uncore
frequency scaling. Traffic forecasting was shown to perform feasibly in this scenario,
enabling the proactive determination of policies.

Joint Orchestration of vRAN and Edge Al Services: Building on prior findings that highlighted
trade-offs between delay and accuracy, the final deliverable introduces a Bayesian learning-
based policy that minimizes energy consumption while meeting performance targets. This
approach effectively navigates a large configuration space with minimal assumptions, aligns
with O-RAN standards, and is experimentally validated using a prototype for edge Al services.

Impact and Future Directions:

The advancements presented in this deliverable highlight the commitment of BeGREEN to sustainable and
intelligent network design. By addressing critical challenges in energy efficiency, the project paves the way
for scalable, high-performance B5G and 6G networks that align with global environmental goals. Key
takeaways include:

The importance of balancing energy savings with QoS requirements to ensure user satisfaction.
The potential of Al/ML-driven solutions to automate and optimize network operations dynamically.

The need for continuous monitoring and adaptation to evolving network conditions and traffic
patterns.

Future work will focus on further integrating these solutions into real-world deployments, exploring
additional use cases, and refining the capabilities of the Intelligence Plane to support emerging technologies
and standards. The insights and methodologies developed in BeGREEN WP4 provide a robust foundation for
ongoing innovation in energy-efficient network management.

Through these efforts, BeGREEN drives sustainable advancements in next-generation communication
systems, ensuring that performance and environmental responsibility go hand in hand.
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Appendix 1: Characterization of the gNB and relay transmitted power

Let assume a specific macrocell gNB with cellular technology (e.g. 5G-NR) and R relays connected to this gNB.
This work considers communication in the downlink direction, i.e., from the gNB/relays to the UEs, and
assumes that the gNB and the relays operate at different frequencies. The UEs may connect directly to the
gNB or through a relay (that may be either a fixed relay or a RUE). Let consider K UEs that connect directly
to the gNB. Additionally, R relays are also connected to the gNB and each r-th relay (r=1,...,R) is serving J; UEs.

In case of a k-th UE (k=1,...,K) directly connected to the gNB, the capacity per Resource Block (RB) in this link
can be determined according to the Shannon bound as:

PronB ‘ﬁk) (A1-1)

Cx = Brp,np " €ns - l0g2 (1 + P
N

Where Pggns denotes the transmitted power per RB at the gNB, Pyv=No-Bgs,ns is the noise power measured
over the RB bandwidth Bgsns, With Ny as the noise power spectral density. The term eps is an efficiency factor
O<enp<1 that accounts for the overheads associated to cyclic prefix, reference signals, control plane signalling,
etc. The term B¢ in (8) corresponds to the gNB-UE link channel gain, considering the antenna gains and the
propagation loss, defined as:

GT'GT

(A1-2)

Where Grand Gg denote the transmit and receive antenna gains, and L is the propagation loss between the
gNB and the k-th UE, that includes the distance dependent loss and the slow fading (shadowing). In order to
satisfy a specific UE bit rate requirement rp, the number of required RBs at the gNB in the downlink direction
can be calculated as:

Tp
MyeqnBk = C_kl (A1-3)

Where the operator denotes the smallest integer higher than x.

When a j-th UE (j=1,...,J;) is connected through a specific r-th relay (r=1,...,R), the number of RBs required at
the gNB (Mg ns,r) and at the r-th relay (Mreqrj) can be determined following the same procedure as before,
by means of equations (8) and (10):

Tp

Mreq,NB,r = Preng ':81” (A1-4)
Breng * €ng * l0g> (1 + T)
1
Mreq,r,j = b Prer - Bir (A1-5)
BRB,R M ER * l0g2 (1 + TRJ,>

Where Pggr is the power per RB at the relay, Bgsr is the relay bandwidth per RB, and &r is the efficiency factor
in the link between the relay and the UE. The noise power is determined as Pn,z=No-Bgs r. Finally, the channel
gains in the gNB-Relay link and the link between the r-th relay and the j-th UE is characterised by the terms
B and 8, respectively, according to the corresponding antenna gains and propagation losses.
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Then, the total number of RBs required at the gNB is determined as:

K R
Mreq,NB = z Mreq,NB,k + zjr : Mreq,NB,r (A1'6)
k=1 r=1

Note that the first term corresponds to the required number of RBs associated to the K UEs that are directly
connected to the gNB, and the second term is the required number of RBs at the gNB associated to the gNB-
Relay links. It is worth mentioning that, in order to satisfy the UE bit rate requirements, the total number of
required RBs at the gNB must be below the maximum number of available RBs at the gNB (i.e. Mreqns<Mns).
The total transmitted power associated to the gNB is determined as:

Prng = Prene - Mregns (A1-7)

Similarly, for a specific r-th relay, the total transmitted power can be determined as:

Pry = Pron ) Mreqs; (A1-8)

As before, in order to satisfy the UEs bit rate requirements, the number of required RBs at the relay must be
below the maximum number of RBs Mk available at the relay.
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