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Executive Summary 
This document, BeGREEN D4.3, consolidates BeGREEN’s final results on AI/ML-assisted energy efficiency for 
5G/6G-ready RANs. It refreshes the Intelligence Plane introduced in BeGREEN D4.2, quantifies the AI/ML 
plane’s own energy footprint, validates closed-loop control with O-RAN components, and reports end-to-
end gains across vRAN, live 5G NSA, relay-enhanced RANs, and edge scenarios hosting UPF and AI services. 

Chapter 2 revisits the Intelligence Plane, keeping the core AI Engine with near/non-RT RIC integration while 
adding hooks for CF-mMIMO and ISAC. Interfaces from BeGREEN D4.2 are preserved; new policies and 
telemetry enable sensing-assisted control and user-centric coordination. We analyse the energy cost of the 
AI/ML plane itself—training, serving, storage, orchestration—against the network-side savings it drives, 
showing that BeGREEN’s lightweight models achieve favourable trade-offs between size, accuracy, and 
inference rate. Final validations benchmark serving workloads, automate dataset creation and model 
training with energy metering, and verify AI Engine–RIC workflows on a representative cell on/off loop, 
including conflict management procedures. Additional scenario validations will be reported in BeGREEN D5.3 
as part of PoC#1. 

Chapter 3 presents the final evaluation of five AI/ML-assisted methods to enhance energy efficiency. In 
vRANs, we study cache isolation and LLC utilisation and introduce MemorAI, a lightweight controller that 
steers cache/CPU to active threads, lowering platform power without harming throughput or latency. For 
carrier on/off, a compact classifier uses traffic/context features to trigger sleep/activation with guardrails, 
delivering energy savings without SLA regressions in offline and lab tests. In relay-enhanced RANs, we define 
RUE identification, compare activation policies, and quantify coverage, sum-rate, and uniformity gains versus 
no-relay baselines, including detailed power consumption. For UPF, we characterise compute–power curves, 
validate experimentally, and build a traffic-aware ML policy for scaling and placement that reduces energy 
on realistic traces at constant QoS. Finally, we jointly orchestrate vRAN and edge-AI services with a multi-
objective coordinator that maintains QoS while cutting total energy in static, heterogeneous, and dynamic 
scenarios. 

Chapter 4 concludes that BeGREEN delivers an O-RAN-aligned Intelligence Plane extended for CF-
mMIMO/ISAC, practical guidance to ensure the AI plane yields net energy savings, and validated AI-driven 
procedures that reduce energy without QoS penalties. The accompanying assets—configurations, policies, 
measurement scripts—are ready for replication in PoCs (D5.3) and for transfer to standardisation and 
industry pilots. 
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 Introduction 
The transition to Beyond 5G (B5G) and 6G networks has underscored the urgent need for sustainable 
solutions to mitigate the rising energy consumption of next-generation communication systems. As network 
operators strive to meet the growing demands for ultra-reliable low-latency communications, massive 
connectivity, and enhanced data rates ensuring energy efficiency has become a critical priority. The BeGREEN 
project adopts a holistic approach to evolving radio access networks (RANs) that not only accommodate 
increasing traffic and service levels but also consider EE to meet global greenhouse gas emissions reduction 
targets set by the EU and other countries around the world. 

BeGREEN D4.3 comprises the final evaluation of the efforts in BeGREEN Work Package 4 (WP4), focused on 
developing and validating AI/ML-driven solutions aimed at optimizing energy efficiency across the RAN, Core, 
and Edge domains. This deliverable builds on the two previous deliverables produced by WP4: BeGREEN D4.1 
[1] reviewed the State-of-the-Art (SotA) and challenges, and presented the initial definition of the BeGREEN 
O-RAN Intelligence Plane and the proposed AI/ML-driven methods to enhance energy efficiency. BeGREEN 
D4.2 [2] described the progress on the development of the proposed solutions and presented their initial 
validation.  

The BeGREEN Intelligence Plane, central to this framework, continues to evolve as a cross-domain 
management entity that integrates advanced AI/ML technologies to monitor, analyse, and optimize network 
operations. By leveraging the Intelligence Plane's AI Engine, Service Management and Orchestration (SMO), 
and RAN Intelligent Controllers (RICs), BeGREEN addresses the multifaceted challenges of EE. These 
challenges include the management of dynamic network environments, the efficient utilization of virtualized 
RAN (vRAN) resources, and the incorporation of emerging technologies such as Reconfigurable Intelligent 
Surfaces (RISs), Integrated Sensing and Communication (ISAC), and Relays. 

BeGREEN D4.3 expands on the solutions and methodologies introduced in prior deliverables and focuses on 
their refinement, integration, and comprehensive evaluation. It details advancements in AI/ML model 
development and optimization, the deployment of energy-saving strategies, and the validation of these 
solutions in realistic and controlled scenarios. This deliverable also explores the joint orchestration of RAN 
and Edge AI services, the management of energy-efficient user-plane functions, and the enhancement of 
data-driven decision-making processes. 

The document is structured as follows: 

• Chapter 2 elaborates on the final architecture of the BeGREEN Intelligence Plane, including 
enhancements to its components, interfaces, and functionalities. This chapter emphasizes the 
integration of advanced energy metrics such as Energy Score and Energy Rating and details the 
incorporation of cutting-edge technologies like RIS and ISAC. Finally, the functionality of core 
procedures and components is validated.  

• Chapter 3 provides a thorough evaluation of the proposed AI/ML-driven solutions, showcasing their 
performance in addressing key energy-saving challenges. Key focus areas include vRAN resource 
allocation, QoS-aware cell on/off switching, intelligent relay deployment, traffic-aware compute 
resource management, and joint orchestration of RAN and Edge services. 

• Chapter 4 summarises the findings and key insights from the evaluations, highlighting the impact of 
BeGREEN's solutions on improving energy efficiency across network domains.  

Through the advancements described in WP4 and evaluated here, BeGREEN reaffirms its commitment to 
driving innovation in energy-efficient network design and operation. By addressing critical challenges and 
demonstrating the feasibility of its solutions, BeGREEN paves the way for sustainable, scalable, and 
intelligent B5G and 6G networks that balance performance and environmental responsibility. 



D4.3 – Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane 

14 

 
BeGREEN [SNS-JU-101097083] 

 BeGREEN Intelligence Plane 
The main architecture of the Intelligence Plane, including its main components and interfaces, was presented 
in BeGREEN D4.2 [2]. While most of the architecture remains largely unchanged, focusing on the integration 
of the AI Engine and the RICs, additional analysis have been conducted to incorporate novel technologies 
investigated in the BeGREEN WP2 and WP3, such as cell-free massive Multiple-Input Multiple-Output (CF-
mMIMO) and ISAC. The updates to the architecture are presented in Section 2.1, along with a summary of 
the complete Intelligence Plane architecture described in BeGREEN D4.2 [2]. 

Section 2.2 focuses on analysing the energy consumption of the AI/ML plane itself. With the rise of AI/ML, 
significant effort has been dedicated to developing AI/ML-driven optimizations, supported by models with 
diverse characteristics. This is also the case for BeGREEN, whose ML models aim to enhance the energy 
efficiency of beyond 5G and 6G networks. However, in this context, it is also relevant to assess the energy 
efficiency of these models, exploring the trade-offs between energy consumption and model performance 
and utility. Notably, the BeGREEN models presented in Chapter 3 do not require heavy training or high 
resource consumption due to their characteristics. Nevertheless, Section 2.2 aims to provide insights and 
clarifications into this topic. 

Energy consumption is also considered in Section 2.3, which presents the final validations of the Intelligence 
Plane. First, complementing the benchmark presented in BeGREEN D4.2 [2], the energy consumption of the 
Intelligence Plane is evaluated based on the workload generated by serving model outputs. Additionally, 
validation of model training is presented, focusing on energy consumption and the automation of dataset 
creation. Then, the interaction between the AI Engine and the RICs is validated by presenting the main 
workflows and procedures involved in the BeGREEN AI/ML-driven control loops, using as example the cell 
switching on/off use case. Finally, validation of the conflict management procedures is discussed. Further 
validations will be included in BeGREEN D5.3 as part of the use cases defined within proof-of-concept 1 
(PoC1). 

2.1 Intelligence Plane Architecture 
Figure 2-1 illustrates the final architecture of the BeGREEN Intelligence Plane. As highlighted in previous 
deliverables, the proposed architecture addresses two main objectives. First, to provide a serverless 
execution environment hosting the AI/ML models through the AI Engine, which provides inference and 
training services for rApps/xApps, effectively integrating AI/ML into the O-RAN architecture. Second, to 
incorporate the necessary interfaces and components to manage the RAN and Edge technologies, supporting 
BeGREEN's energy efficiency optimizations. Thus, this architecture represents BeGREEN’s final design, 
integrating its key innovations and contributions. 

Next subsections detail the concepts and implementation of the main building blocks of the architecture.  

 Intelligence Plane baseline 

The Intelligence Plane baseline is formed by the main components enabling programmability and intelligence 
in the O-RAN architecture, i.e., the Non-RT RIC within the SMO and the Near-RT RIC, plus the BeGREEN AI 
Engine. As the complete architecture was already described in BeGREEN D4.2 [2], in this BeGREEN we provide 
a comprehensive summary of the key components, interfaces, and workflows to ensure a clear 
understanding of the validations presented in Section 2.3. 
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Figure 2-1: Final BeGREEN Intelligence Plane architecture 

 AI Engine 
The AI Engine enables the implementation and exposure of AI/ML services in a loosely coupled manner. This 
means that models are trained and hosted in the AI Engine, with their inference exposed to rApps and xApps 
rather than being embedded directly within them. As noted in BeGREEN D4.2 [2], this approach promotes 
model reuse and allows ML and RAN control developers to focus on their respective areas of expertise, 
leveraging AI/ML and RAN management services as independent yet interoperable components. Additionally, 
the AI Engine framework implements serverless inference, enabling model offloading through serverless 
computing and hardware acceleration. This permits to leverage AI Engine benefits both in the non-RT and 
near-RT domains, as well also in other domains such as the 5G Core or the Edge services, as illustrated in 
Figure 2-1 through AIA-x interfaces.  



D4.3 – Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane 

16 

 
BeGREEN [SNS-JU-101097083] 

Implementation-wise, the AI Engine has been developed using MLRun 1 and Nuclio 2 frameworks, which 
provide MLOps and serverless capabilities in Kubernetes environments. As detailed in Section 2.3, the main 
validation and evaluation efforts has been focused on AIA-1 interface for inference, connecting the AI Engine 
and the non-RT RIC. Nevertheless, similar approach can be applied to the near-RT RIC and the other domains.  

The AI Engine also provides specific BeGREEN metrics, the Energy Score and the Energy Rating [2], which are 
used to determine the absolute and relative performance of the network entities in terms of EE, allowing to 
support BeGREEN optimisations and track their impact. The Energy Score and Energy Rating functions in 
BeGREEN calculate the EE in the network at the level of any component that measures both the volume of 
data that it transmits and its energy consumption. In addition, an Energy Measurement function enables the 
BeGREEN energy-saving ML functions to calculate their own energy consumption. This allows that the 
measured energy savings account for the additional energy overhead required to run these components, 
providing a net savings estimate. Additional details about these functions are provided in Section 2.2.1. 

Additionally, the AI Engine includes a Model Catalogue and Selection Function. As described in Section 2.2.4, 
the objective of this function is to provide energy efficient model selection according to the required 
accuracy. AIA rApps and xApps can make use of this function to serve the appropriate model according to 
the request of the consumer rApps and xApps.  

 SMO and Non-RT RIC 

The main role of the SMO in BeGREEN is to host the functions required to control and monitor RAN and Edge 
resources via O1/O1+ and O2/O2+ interfaces, which are exposed to control rApps. Therefore, in addition to 
the standard O1 and O2 functions defined by O-RAN for managing O-nodes and O-Cloud [3], it incorporates 
components and interfaces related for RIS, Relays and Edge resources. Details on these additional functions 
are provided in the following subsections, which focus on specific technologies. 

Regarding the non-RT RIC, as was detailed in D4.2 [2], two main functionalities are implemented and 
validated. First, the life cycle management (LCM) of rApps, including: (i) control rApps devoted to cross-
domain optimisations targeting EE, (ii) AI Engine Assist (AIA) rApps exposing the AI Engine services, and (iii) 
producer rApps exposing data such as Key Performance Metrics (KPMs). Second, the non-RT RIC implements 
the R1 interface to enable rApps to exchange data among them and to access the SMO (RAN and Edge control 
and monitoring) and the near-RT RIC (xApp management through A1 policies) services.  

The key component to implement the R1 interface, particularly the Data Management and Exposure (DME) 
functions, is the Information Coordination Service (ICS) component, provided by the O-RAN Software 
Community (OSC) [4]. This component manages the available data types and the communication between 
data producers and consumers. In BeGREEN we also leverage this service to expose the inference outputs of 
the ML models, which are defined as data types and produced by the AIA rApps. In BeGREEN D4.2 [2] it was 
defined the model of the information types, the AIA rApps and the control rApps, which have been validated 
in the different demonstrations of the project3 4.  

The final implementation of the non-RT RIC has also focused on the realization of the A1 interface to manage 
A1 policies related to Energy Savings. As will be detailed in Section 2.3.4, we have adopted the models 
presented in BeGREEN D4.2 [2], both in the Non-RT and Near-RT RIC sides, allowing to exchange A1 policies 
related to the operational status of the cells between the control rApps and the Energy Saving xApps.  

 
1 https://www.mlrun.org/ 
2 https://nuclio.io/ 
3 https://www.youtube.com/watch?v=_N0JY0Sepgc 
4https://youtu.be/Iauc_-ffb8E?si=LriIb0uCSdZKZ_mu 

https://www.mlrun.org/
https://nuclio.io/
https://www.youtube.com/watch?v=_N0JY0Sepgc
https://youtu.be/Iauc_-ffb8E?si=LriIb0uCSdZKZ_mu
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 Near-RT RIC 

The Near-Real-Time RIC in the BeGREEN architecture acts as the central action and decision-making entity 
for RAN control, hosting xApps that operate with under second-level responsiveness. It receives A1 policy 
guidance from the Non-RT RIC via the A1 interface and relies on timely, telemetry data from the RAN. To 
ensure a consistent and standardised data flow, the Telemetry Gateway (TGW) is a central component in the 
BeGREEN architecture that ensures seamless integration and interoperability across heterogeneous RAN 
infrastructures. Described in BeGREEN D4.2 [2], it collects, translates, and standardises telemetry data from 
multiple interfaces—including O-RAN compliant (E2, O1) and non-compliant sources—into a unified format 
for use by the Near-RT RIC and its xApps. By decoupling data processing from specific vendors or protocols, 
the TGW enables consistent metric generation, supports near real-time control actions, and allows advanced 
applications like energy saving and mobility management to operate effectively across diverse network 
environments. 

Among the xApps deployed, the Energy Saving xApp and the Handover Manager xApp are key components 
of the BeGREEN system. The Energy Saving xApp dynamically switches cells on or off and adjusts power levels 
to reduce energy consumption based on telemetry inputs, traffic predictions and issued A1 policies, 
achieving substantial savings while maintaining QoS. In parallel, the Handover Manager xApp leverages 
advanced algorithms like Mobility and Load Aware proActive haNDover Algorithm (MOLA-ADNA) to optimise 
UE mobility across the network, outperforming traditional reactive methods through proactive, multi-metric 
analysis that includes RSRP, RSRQ, throughput, and cell load. These xApps are tightly integrated with the 
dRAX databus and the TGW, allowing seamless access to metrics and enabling coordinated control actions. 

To ensure consistent system behaviour, in BeGREEN we have introduced a collaborative conflict mitigation 
framework within the Near-RT RIC. Conflicts between xApps or A1 policies—whether objective, resource-
based, or scope-related—are addressed through detection, resolution, and avoidance mechanisms. A 
Conflict Manager entity tracks xApp subscriptions, manages policy distribution, and monitors the state of 
RAN elements through a centralised database. Each xApp includes a conflict avoidance handler that reacts 
to alerts and policies in real-time. This architecture allows the system to resolve control conflicts proactively, 
ensuring harmonious operation across the AI-driven control loops and enabling scalable, policy-aware 
orchestration for energy-efficient and intelligent RAN management. 

 Edge domain 

As illustrated in Figure 2-1 and described in previous BeGREEN D4.1 [1] and D4.2 [2], BeGREEN incorporates 
into the Intelligence Plane the management of Edge domain resources. According to the O-RAN architecture, 
edge resources can indeed be considered part of the O-Cloud, containing virtualized RAN components such 
as the CU or the DU [5]. In this context, the work detailed in Section 3.1 presents an AI/ML-assisted method 
to address the problem of compute resource allocation in virtualized RAN under shared computing 
infrastructure. Additionally, in BeGREEN, we consider the dynamic management of edge resources dedicated 
to other functions closely integrated with the RAN, such as the User Plane Function (UPF) of the 5G Core or 
AI services. Details on the procedures and algorithms for EE in these domains are provided in Sections 3.1 
and 3.4, while in this section we briefly summarize the main components, interfaces and functionalities that 
would be required in the O-RAN architecture to integrate the proposed solutions, as illustrated in Figure 2-1. 

First, we consider an Edge resource controller, placed in the Edge, which similarly to the O-RAN Infrastructure 
Management Services (IMS) [6] should expose methods to allow the dynamic monitoring and management 
of edge resources. Specifically, the following services should be available:  

• Inventory and policies: The Edge Resource Controller shall expose methods to retrieve server 
characteristics, including the pool of available resources (e.g., number and type of CPUs and GPUs) 
and available energy-saving policies (e.g., performance or energy-saving mode, supported P-states 
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and C-states, etc.). 

• Monitoring: The Edge Resource Controller shall provide status updates, metrics, and alarms related 
to resource utilization and availability (e.g., CPU/GPU load, power consumption, energy usage). 
Consumers, such as the Edge Control Function located at the SMO, can subscribe to these metrics 
via the proposed O2+ interface. Combined with performance indicators of hosted functions, such as 
data volume processed by the CPU, energy-related metrics may be used to compute the Energy 
Score and Rating of the servers. 

• Dynamic management: The O2+ interface shall expose functions and policies for dynamic resource 
management, including CPU/GPU allocation and configuration. Non-RT control shall be the minimum 
time granularity, though near-RT control could be beneficial in some cases (e.g., managing C-states). 

In order to integrate these functionalities into the SMO, BeGREEN proposes (i) an Edge Control Function, 
which should implement similar functionalities as the Federated O-Cloud Orchestration and Management 
(FOCOM) manages, and (ii) a O2+ interface, working similar as O2-IMS [7]. Indeed, both the proposed 
function and interface could be incorporated into a broader specification of FOCOM and the O2 interface to 
support the general management of edge resources beyond the RAN, as highlighted in Sections 3.1 and 3.4. 

 Relays 

The development of different relay control functionalities leads to the improvement of decisions of relay 
deployment, relay activation/deactivation, etc., which can improve the system performance and also provide 
a significant reduction in the energy consumption. BeGREEN has considered two types of relays: (i) the use 
of fixed relays to support 5G in the context of the recently Integrated Access and Backhaul (IAB) technology 
introduced by 3GPP [8], and (ii) the concept of UE-to-network relaying, in which a Relay-UE (RUE) has the 
capability to relay the traffic of another UE to/from the network in a two-hop communication manner [9]. 
Then, the relay represented in Figure 2-1 can be either an IAB-node or a Relay-UE. In case of a RUE, it is 
connected with the RU through the Uu interface. In case of the relay being an IAB-node, this interface Uu is 
also used to connect IAB-node Mobile Termination part (referred as IAB-MT) with the RU and, in addition, 
the interface F1 represented in dotted line in Figure 2-1 is used to connect the DU part of the IAB-node 
(referred as IAB-DU) with the CU part of the IAB-donor. The physical realisation of these interfaces is done 
on top of the Uu interface between the IAB-MT and the RU.   

As introduced in BeGREEN D4.1 [1] and D4.2 [2], the considered relay control functionalities cover different 
aspects. On the one hand, a functionality for the identification of periods of time and geographical regions 
with high traffic demands and poor propagation conditions has been proposed in BeGREEN. On the other 
hand, another relevant relay control functionality is the identification of UEs that can be good candidate to 
serve as RUEs (i.e. UEs with relaying capabilities that may serve neighbour users with poor propagation 
conditions with respect to the gNB). Additionally, a functionality for the identification of the necessity to 
deploy fixed relays and the determination of the most adequate geographical location for their placement is 
also considered. Finally, BeGREEN considers the dynamic activation/deactivation of these fixed relays/RUEs. 
According to this, relays/RUEs are activated when needed to serve other UEs located in the coverage hole 
regions and are deactivated when they are not necessary, with the aim to minimize the energy consumption. 

For the implementation of the previously mentioned relay control functionalities, several components and 
interfaces are necessary in the BeGREEN architecture, as described in detail in D4.2 [2]. On the one hand, a 
relay control placed at the SMO is in charge of the interaction with the relays for the collection of network 
measurements and the relay reconfigurations. This is done through an extended O1 interface, denoted as 
O1+ interface in the BeGREEN architecture. Measurements collected in the gNBs are sent to the SMO 
through the O1 interface. The different relay control functionalities are sustained by different rApps located 
in the Non-RT RIC. In particular, a Data Collection rApp oversees the management of the collection of 
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measurements in the RAN. Moreover, a Relay Management Function is in charge of the coordination and 
management of the different relay control functionalities. Each of these functionalities are sustained by 
different AI/ML models and databases hosted in the AI Engine. Finally, a set of AIA rApps are also necessary 
in the Non-RT RIC to cover different aspects such as data pre-processing, performance monitoring of the 
AI/ML models, model inference exposure and determination of the necessity of model updates or model 
retraining. More details of the architecture, functionalities, workflows and algorithms are provided in 
BeGREEN D4.2 [2]. 

 RIS 

Another key stone of BeGREEN EE strategies is the use of RISs. The ability to dynamically adapt RIS behaviour, 
encompassing decisions around their strategic placement and real-time configuration, unlocks substantial 
gains in system efficiency. As introduced in BeGREEN D4.2 [2] and D3.3 [10], RIS management is done by 
both the near-RT RIC and the non-RT RIC.  

The control of the RIS is mainly required by coverage extension related use cases, where the RIS can reflect 
incoming RF signals from UEs and gNBs enabling communication in those scenarios where the signal is too 
weak, or increasing signal quality to improve the RAN efficiency. Such use cases usually require configuring 
the RIS with a pre-calculated codebook to reflect the signal towards the desired angles (azimuth 𝜃𝜃 and 
elevation 𝜑𝜑 ). However, deciding which are the optimal angles is not trivial, especially in scenarios highly 
affected by multipath. Therefore, approaches such as fast beamsweeping or exhaustive search outside the 
codebook are normally required. For this reason, the RIS control channel should also support per-element 
phase configuration. In addition to this, RIS can also support advanced ISAC solutions to locate the user. 
Besides the benefit of obtaining positioning information, knowing the location of the user can improve EE by 
improving the communication channel, including optimized beamforming and coverage extension. For those 
localization use cases, RIS control may require supporting the configuration of the phase offset from a given 
codebook, e.g., to adjust the phase of the signal at the receiver and allow for Angle of Arrival (AoA) 
positioning. Integrating such RIS control mechanisms within the BeGREEN architecture requires RIS-specific 
components and interfaces, as presented in Figure 2-1 and previously discussed in BeGREEN D4.2 [2] and 
D3.3 [10]. At the SMO, the rApps handle the non-RT use of RIS (such as codebook training, non-RT coverage 
extension, position requesting, etc.), and the O1+ includes end points to directly interact with the RIS (see 
D3.3 for more details). On the other hand, the near-RT RIC will host the xApps involving the near-RT use of 
RIS (fine-grained configuration, mobility support, near-RT coverage extension, etc.), and will implement the 
RIS related E2SM, such as the E2SM-SSC and E2SM-SSM (see BeGREEN D4.2 [2] and BeGREEN D3.3 [10] for 
more details). 

Finally, the BeGREEN architecture will also include the in-site control of the RIS through the F1-x interface 
and possibly dApps [11] located in the gNB. dApps may perform RIS+ISAC related actions (e.g., I/Q sample 
processing) or just become a proxy for the RIS xApps, offloading control overhead from the E2+ to the F1-x 
interface. Also, as discussed in BeGREEN D3.3, RIS related xApps may interact with the dApps through the 
E2SM-SSM and E2SM-SSC using the E2+ interface. We validate this RIS integration model into the BeGREEN 
architecture in following Section 2.3.6. 

 ISAC 

The primary issue that arises when considering non-3GPP access networks as sensing information sources is 
how these can report their metrics through the 5G system in a standardised and efficient manner. BeGREEN 
intends to do this in a lean manner without involving the full 5G system but considering only the RAN part 
and the RICs. Given the work carried out in BeGREEN with a non-3GPP non-Wi-Fi node, such as the Sub-6 
sensing system presented in BeGREEN D3.1, D3.2 and D3.3, it is proposed to extend the architecture to allow 
the integration of these “external” sensing nodes. 
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Figure 2-2: Proof of concept for sensing data exposure from non-3GPP wireless nodes to the RIC 

The output of the sensing information from these devices is exposed to the RAN segment in a secure way 
through suitable extensions of the E2 interface of the Near-RT RIC. The E2 interface, which facilitates 
communication between the near-RT RIC and RAN nodes also employs SCTP over IP, with a suitable protocol 
for the communication over the E2 interface (E2AP) handling the control signalling at the application layer. 
An E2 Service Model (E2SM) for sensing is required to establish the communication between the sensing 
node and the RIC, and this communication is carried out through publication and subscription mechanisms 
to facilitate the exchange of information between xApps and RAN functions. 

The messages defined by the E2AP protocol, also known as procedures, encapsulate different E2SMs. These 
messages enable the implementation of functionalities associated with both the control and monitoring of 
RAN metrics. From the final BeGREEN architecture shown in Figure 2-1, the ISAC node represented therein 
corresponds to the E2 node depicted in Figure 2-2, where the E2 Agent receives sensing data the sensing 
data processing unit. This processing is performed locally and generates sensing information, in the form of 
heatmaps that can be represented in a visualization tool, e.g. Grafana. In particular, a new sensing SM has 
been developed, which is integrated as a library in each of the agents involved: the near-RT RIC, the xApps, 
and the E2 agent. 

 Cell-free networks 

A cell-free (CF) architecture is conceived as a user-centric architecture that aims to provide the best link 
quality at any time. To this end, distributed Access Points (APs) are pervasively deployed, and the best ones 
are selected to serve each of the user. Hence, a cell-free system requires coordination among the different 
APs, a joint processing, and dynamically adapting the selected of APs over time according to the position of 
the UEs and their needs. In the scope of O-RAN, O-RUs are the cell-free APs and the O-DUs compute the joint 
processing. A cell-free system makes use of the distributed APs to erase cell boundaries. However, in an O-
RAN deployment, there are logical boundaries as one UE can be served by different O-RUs that are not 
connected to the same O-DU. We refer to this user as the edge user.  

When serving an edge user, one O-DU will be the main O-DU and will receive user-related data from O-RUs 
that are connected to the other O-DUs, and the latter will share this data through the Inter-O-DU interface. 
Therefore, we need the O-DUs to cooperate and collaborate in executing the joint processing. This 
coordination is done by enabling an interface that connects different O-DUs as depicted in Figure 2-1. 
Although still not fully specified, this interface, denoted as D2, is currently under the O-RAN Alliance's 
standardization process [12]. 

Regarding the Near-RT RIC, it can determine whether the UE is a regular or an edge user and assign the best 
RUs to this UE. This process, which needs to be updated over time as the user moves, might be done by an 
xApp. 

2.2 Energy efficiency in the Intelligence Plane 
Since the goal of the BeGREEN project is to reduce energy consumption required to operate and manage 
radio networks, it is important to also minimize the energy consumed by the functions that BeGREEN 
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employs to achieve this objective. The energy consumed by energy saving functions must be measurable to 
provide comparable baseline measurements to calculate the savings achieved by BeGREEN energy saving 
functions. In the BeGREEN project, EE is calculated as the ratio of bits transmitted per joule of energy. The 
AI Engine hosts specific functions to facilitate the measurement and calculation of both absolute and relative 
EE metrics as described in Section 2.2.1. 

Additionally, in this section, the document analyzes the energy efficiency of the AI/ML models themselves, 
emphasizing the need to balance computational resource consumption with model performance. Key 
aspects covered include: 

• Energy Score and Rating Functions: Metrics to measure and compare the energy efficiency of 
network components in bits per joule, enabling data-driven optimization. 

• Energy Consumption of AI/ML Models: Evaluation of trade-offs between model complexity, 
accuracy, and energy usage, with techniques like dimensionality reduction to minimize overhead. 

• Model Training Energy Measurement: A framework to quantify the energy cost of training, 
validating that CPU usage is the dominant factor, and how to measure the energy cost of model 
training. 

• Model Selection Function: A proposal for an AI Engine feature to dynamically select the most energy-
efficient model that meets accuracy requirements, promoting sustainability in decision-making. 

 AI Engine Energy score/rating functions 

The Energy Score function provides an absolute measure of energy efficiency for a component in bits per 
joule. The AI Engine hosts it as a serverless function to perform the calculation of  energy efficiency scores 
for components in the network. The basic requirement to calculate energy score for a network entity such 
as a cell or gNB is that the energy consumption and a data volume and/or throughput measures are available. 
At layers where it is available (e.g., the PDCP layer), the measurement should be net number of 
retransmissions. 

The Energy Score function is a very simple function that performs a calculation based on energy usage and 
data volume or throughput measurements and returns an ‘energy score’ as an absolute value in bits per 
joule. Bits per joule is the standard measurement for EE in telecommunications as defined by the Next 
Generation Mobile Networks (NGMN) in [13]. Using a standardised measurement with a straightforward 
formula means that equivalent values can also be calculated for network equipment outside the scope of 
the AI Engine. To effectively validate the energy savings achieved by the BeGREEN project, the Energy Score 
must represent an absolute value of EE as opposed to a measure relative to external factors.  

The Energy Score function accepts a JSON payload containing two key fields: 

• data_volume: Represents the volume of data transmitted, measured in megabits (Mbits). This can 
be a single value or a list of values. 

• energy_consumption: Represents the energy consumed during the data transmission, measured in 
watt-hours (Wh). This can also be a single value or a list of values. 

The AI Engine function calculates the energy score using the formula, where: 

• Data volume is converted from megabits to bits by multiplying by 106. 

• Energy consumption is converted from watt-hours to joules by multiplying by 3600. 

The Energy Score function output returns both individual energy scores (when multiple values are passed in) 
as well as an overall average score for the aggregated data. The function also includes input validation, error 
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handling and logging to the AI Engine framework to provide a robust, efficient and scalable solution to EE 
calculation in BeGREEN. 

The Energy Rating function is also deployed as a serverless function on the AI Engine. The Energy Rating 
function is able to provide a relative energy rating (A – E) for any network entity in the BeGREEN ecosystem 
based on available historical data (including energy consumption and data throughput/volume 
measurements net of retransmissions at layers where this is available). The most efficient 20% of entities are 
rated A, the next 20% rated B and so on.  

The Energy Rating function also provides a percentile value to give more insight into EE trends in the network. 
For example, an energy rating will be displayed as ‘A 99’ or ‘C 43,’ allowing smaller changes in relative 
efficiency to be tracked, which would not be possible with an approach limited to the granularity of a quintile. 
As well as the average value over the defined period, the function also provides the current energy rating, 
energy rating one hour ago and energy rating one day ago (dependent on data being available). These metrics 
are key for identification of the network entities that need to be optimized before activating or applying the 
EE algorithms. The historical ratings and precise percentiles of relative performance provide valuable insight 
into a network entity’s EE performance. 

The Energy Rating function calculates relative energy ratings for network entities based on a file or files 
containing performance data, stored in the AI Engine datalake. The Energy Rating function accepts a JSON 
payload containing the following fields: 

• target: list of cells for which to return energy ratings. 

• filelist: a list of files that contain the data from which to compute energy ratings. 

• bucketname: the S3 bucket in the AI Engine that contains the file(s) in the filelist. 

• limit: the number of Result Output Periods (ROPs) to use from the files (the 'limit' most recent ROPs 
from the file will be used). 

• energyconsumptionfieldname: the data field in the file(s) that contains the energy consumption 
information. 

• datavolumefieldnames: the data fields in the file(s) that contain the data volume. 

• timestampfieldname: the data field in the file(s) that contains the timestamp. 

• hours: the number of hours old a pre-existing energy rating calculation can be before it is 
automatically recalculated. 

• conversionfactor: adapts to the units used in the data volume fields (e.g. if data volumes are 
provided in kilobits use conversion factor = 1000 to divide by 1000 to convert to megabits. If provided 
in megabits use conversion factor = 1). 

• rops_per_hour: The frequency of data collection used in the files in the filelist; e.g., for 15-minute 
ROP use 4, for 1-minute ROP use 15. 

The function calculates EE ratings (A, B, C, D, E) based on the percentile of the energy score compared to the 
overall dataset. 

The ratings are calculated as follows: 

• A: 80-100th percentile 

• B: 60-80th percentile 

• C: 40-60th percentile 

• D: 20-40th percentile 
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Figure 2-3: Energy efficiency in the Intelligence Plane - energy rating function output 

• E: 0-20th percentile 

An example of the output of the energy rating function is shown Figure 2-3. 

This shows the average energy rating and energy score for a cell over a 3-days period together with an energy 
rating based on its current consumption and volume and snapshots of its metrics one hour ago and one day 
ago. Section 2.3.2 provides a benchmark for the required resources and the delay associated with serving 
the energy rating function within the AI Engine. 

 Energy consumption of BeGREEN functions 

Predictive models used in telecommunication network management to anticipate future network conditions 
and minimize energy consumption can, in fact, become significant contributors to the overall energy usage. 
These models can consume substantial computational resources for training, inference, and data movement, 
therefore increasing the energy required to operate these networks. These models are used to determine 
likely future values for a variable and can leverage vast amounts of data. Both the volume of data that are 
processed and the type of predictive model used contribute to the resources consumed.  

Previous studies [14] have shown that selectively and frugally processing data can minimize the resource 
consumption of models while retaining their predictive accuracy. In addition to general solution, specific 
techniques exist for certain model types that can automate the feature selection, such as Recursive Feature 
Elimination (RFE) [15] for the XGBOOST model. RFE techniques for linear and Support Vector Machine (SVM)- 
type models are also included in many standard Application Programming Interfaces (APIs). Other model 
types such as Neural Networks (NNs) or K-Nearest Neighbours can utilize SHapley Additive exPlanation (SHAP) 
values to identify the least important features to recursively remove from the model. 

These techniques involve an initial overhead in computational resources and energy consumption when first 
applied, as they work by repeatedly fitting the model and removing the least important features one at a 
time (or in specified batches). However, a model that uses less data will use less computational resources 
during retraining of the model and during inference. The reduction in data dimensionality can also contribute 
to reducing other aspects of the model contributing to energy utilization, such as data storage, data 
movement, memory and I/O. 

An evaluation of dimensionality reduction techniques was carried out in BeGREEN D4.2 [2], where the 
number of input features to a predictive model was limited based on feature importance. Additionally, the 
effects of various levels of dimensionality reduction were evaluated. The results indicated that significant 
reductions in CPU load and data size could be achieved at the expense of very small reductions in model 
accuracy. 

Prior literature [16], which relates models to the energy consumption of data centers, identifies the main 
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components of energy consumption as the CPU, disk, network and memory. To accurately measure the 
energy consumption of training or inference, each of these factors must be considered. 

CPU cycles calculation must consider the Thermal Design Power (TDP) of the processor and its clock speed. 
For example, for a processor with a stated TDP and clock speed, the calculation of its CPU power consumption 
(cpc) is: 

6
( ) _ _*

3.6 *10 _ _ ( )
TDP W CPU cycles usedcpc

CPU clock speed Hz
=  (EC-1) 

To determine the marginal power consumption (dmpc) of disk usage, it i dependent on the type of disk, the 
difference between power consumption of the active and idle states, and the transfer speed of the device. 
The calculation is as follows: 

3

_ _
_*
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dmpc active pc idle pc
dmpc data volumedpc

data transfer rate

= −

=
 (EC-2) 

For obtaining the marginal network power consumption (nmpc) it is necessary to estimate the power 
consumption of the devices involved in a typical end-to-end transmission of network data, typically a number 
of Network Interface Cards (NICs), routers and switches. Additionally, the time taken to transmit the data 
must be calculated, so the bandwidth of the network also factors in the calculation: 

3
_*

3.6 *10 _ _

nmpc NICs Routers Switches
nmpc data volumenpc

data transfer rate

= + +

=
 

(EC-3) 

For calculating the marginal memory power consumption (mmpc), it is necessary to estimate the idle and 
active power consumption of the relevant memory module and its transfer rate. It is also important to 
include a factor for how many times data is read from memory during a typical ML model training task. This 
varies greatly between different ML techniques such as regression algorithms and NNs but is typically in the 
range of 50 to 500 times. To estimate this effect, the data volume is multiplied by 100. 

3

_ _
_ *100 *

_ _ 3.6*10

mmpc active pc idle pc
data volume mmpcmpc

data transfer rate

= −

=
 (EC-4) 

To ensure that the quality of model prediction is maintained, attention must also be paid to quality metrics 
such as model accuracy. It may be desirable in some cases to use a more efficient model for some predictions 
than a model with the maximum possible accuracy. There are many scenarios in telecommunication network 
management where the use of an efficient model that balances speed and accuracy is more beneficial than 
the use of the more accurate model. An example would be an anomaly detection system to quickly detect 
and flag potential issues without providing highly accurate diagnostics immediately. Load forecasting during 
non-peak times when the network has spare capacity can also be done using highly efficient, low accuracy 
modelling. High frequency short term predictions, such as frequent adjustment of base station power levels, 
can also perform better when using a faster but less accurate model. 

The relative contribution of the components of energy usage was assessed on a range of model training tasks.  
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Figure 2-4: Energy efficiency in the Intelligence Plane - Energy Consumption Breakdown 

Taking a typical example of a model predicting future energy consumption values for a cell, the total energy 
consumption was found to come mainly from CPU energy consumption with the other components being 
much smaller factors, particularly the energy consumption of disk access and network I/O. Disk access could 
be slightly higher depending on memory paging. This can be seen in Figure 2-4. 

The implication of this breakdown is that the energy consumption of training a model will be nearly perfectly 
linearly correlated with that model’s CPU usage. It also indicates that the CPU cycles used and the 
specification of the processor, would be sufficient to generate a useful estimate of the energy costs 
associated with training a model, as the contribution of the other factors is extremely small (i.e., < 4%).  

 Measuring the energy consumption of model training in BeGREEN functions 

To validate previous characterization, we measured and estimated the energy consumption of model 
training carried out by BeGREEN functions. To this end, a list of parameters relating to a typical O-RAN 
deployment and hardware was assembled as listed in Table 2-1.  

Table 2-1: Energy Efficiency in the Intelligence Plane - Example System Parameter List 
Parameter Value 
CPU TDP 230W (115W x 2) 

CPU Clock Speed 2.6 GHz 

As analysed in previous section, since the contribution of factors other than CPU to power consumption were 
negligible, only the CPU cycles needed to be calculated to obtain a proper estimate of the power 
consumption of a model training function. The estimated power could then be obtained by adding 
approximately an 4% overhead to the power consumption value calculated from the CPUs. To demonstrate 
this, model training functions were tested to find the number of CPU cycles it took to train the model. The 
amount of data that was passed into the function was also measured. Using these data, an algorithm was 
developed based on the formulae in the previous section that provided the marginal cost in Watt Hours (Wh) 
to train each model. 

The algorithm is deployed in the Intelligence Plane of BeGREEN as an Energy Measurement serverless 
function and is accessible for authors of BeGREEN energy saving functions to measure the energy 
consumption of these functions. To provide this information, the function author must supply the CPU cycles 
and the data volume used for training the function, together with the system parameters of the execution 
environment. This allows BeGREEN to verify its net contribution to EE by evaluating the overhead involved 
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in the energy saving process. The minimum data needed to provide an estimate for a function’s energy 
consumption are the TDP of the processor, the clock speed of the CPU and the number of CPU cycles 
expended in executing the function. A slightly more accurate measurement can be obtained by applying the 
formulae in Section 2.2.2 related to disk, network and memory, together with the volume of data that is 
being passed to the function. 

To obtain an accurate measurement of the actual consumption of the energy saving functions in isolation, 
the measurement of CPU cycles must include all CPU cores used in the computation but exclude any other 
processes or background services executing on the server. There are many tools that can be used to profile 
CPU consumption. Intel VTune [17] works across all major platforms and languages, whereas the ‘perf’ tool 
[18] is Linux specific but also works across all languages. Other language specific, and platform agnostic, tools 
are also available such as psutil for Python but with adaptations for C++ and Go languages, OSHI for Java, sys-
proctable for Ruby and System Diagnostics for C#. Some of these language specific tools vary in their 
capability to measure CPU cycles across multiple cores. If multiple CPUs with differing clock speeds are used 
in the execution of the energy saving functions, CPU cycles must be recorded separately for each processor. 
Then, multiple calls should be made to the Energy Measurement function, and the results must be 
aggregated to get the total energy consumption of the energy saving function. 

To validate this approach, a set of models were trained with 600MB of telecom performance data containing 
1400 features on a 32 CPU server with 256GB of memory. Additionally, reduced feature sets of 400, 200, 
100, 50, 30, 20 and 10 features as described in [1] were considered. The baseline energy consumption of the 
server was measured and found to be stable. The models were repeatedly trained for a 30-minute window 
each, and the statistics for each model were measured using the ‘perf’ tool in Linux and compared to the 
power used by the server, which was separately recorded using a power meter. 

The results show that the calculated energy used was overestimated by over 50% for the smallest models 
with the fewest features but converged on around a 10% underestimate for the models trained on larger 
numbers of features. As the calculated power calculates only the energy consumption of the model training 
section of the code, the overestimation is due to overheads from the sections of instantiate code outside the 
main model training function in multiple runs of shorter-lived training functions. The short training time of 
between 7 and 30 second means that this overhead is a much larger proportion of the total energy 
consumption than would be the case in a model training scenario, which would by typical for a live network. 
For models whose training ran for over a minute there was a much lower differential between measured and 
calculated energy usage. 

Models trained in telecommunications functions in live network deployments are typically larger than the 
samples used here and contain multiple GBs of data and take hours to train so the convergence of calculated 
and measured energy consumption with larger data sets is the best indicator of the accuracy of this method.  

Figure 2-5 shows the energy calculated for each model based on measurements of the usage of CPU taken 
on the system during execution applied to the system’s parameters (as shown in Table 2-1). 

Figure 2-6 shows the percentage error of the energy consumption calculation across the different models, 
with different levels of dimensionality reduction, which were executed for these tests.  

Selecting a model with lower dimensionality means that there is less energy consumed during the training 
of that model. Figure 2-7 indicates how many Watt hours of energy are saved, per training event, by selecting 
a dimensionally reduced model, based on the measured energy consumption and small network size used in 
these tests. Energy savings in a live network deployment with more typical models used in 
telecommunication management functions would be significantly higher. 
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Figure 2-5: Energy efficiency in the Intelligence Plane - Calculated vs Measured power consumption 

 
Figure 2-6: Energy efficiency in the Intelligence Plane - Calculated vs Measured Energy with % Error 

Due to the disproportionate overheads of very small models, as described above, the error in the calculated 
energy consumption is high for the smaller models in the test. Figure 2-8 shows the close correlation 
between CPU utilization measured on the system and the energy consumption measured by the power 
meter. This graph also indicates the convergence of the Calculated and Measured lines for the larger, more 
CPU-intensive models. 
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Figure 2-7: energy efficiency in the Intelligence Plane - Energy Savings vs Full Model 

 
Figure 2-8: Energy efficiency in the Intelligence Plane - Power vs CPU Utilization 

 Model catalogue and selection function 

Selecting the most efficient model to train for a prediction task can save a significant amount of energy over 
time in a large network deployment with many autonomous optimization applications running constantly 
and periodically retraining As introduced in section 2.1.1.1, this involves the provision of a Selector function 
in the AI Engine, designed to automate the selection of the most energy-efficient AI model that meets a 
specified accuracy requirement. It operates as part of the model deployment and inference pipeline, 
ensuring optimal resource utilization while maintaining performance standards.  

To this end, AIA rApps are no longer tied to a specific model or model serving endpoint in Nuclio; instead, 
they are associated with an information type, such as 'cell load prediction' or 'cell energy prediction'. When 
a request is received via R1/ICS from a control rApp for a specific information type and accuracy requirement, 
the AIA rApp queries the Model Selection function in the AI Engine to determine the most energy-efficient 
model to fulfil it. The Model Selection function responds with the endpoint of the selected model, which the 
AIA rApp then uses to start serving the model output. This procedure is triggered each time an rApp requests 
a model output for the first time, i.e., when a new job subscription is received by the AIA rApp via ICS/R1. 
The workflow in Figure 2-9 illustrates these operations. 
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Figure 2-9: Energy efficiency in the Intelligence Plane - model selection architecture 

The key functionalities of this procedure are described as follows:  

1. Model Selection Based on Accuracy: The function accepts a JSON input containing a 
required_accuracy parameter. It queries the MLRun database to retrieve metadata for all registered 
models across projects, filtering those that meet or exceed the specified accuracy. The metadata 
includes metrics such as r2_score (accuracy) and total_energy_wh (energy consumption). 

2. Energy Efficiency Optimization: From the filtered models, the function selects the one with the 
lowest energy consumption. This ensures minimal operational overhead while adhering to the 
accuracy constraints, aligning with sustainability goals in cellular network management. 

3. Dynamic Response to Input: The function handles edge cases gracefully, such as invalid JSON input, 
missing accuracy parameters, or no models meeting the criteria. It provides informative error 
messages and usage guidelines to facilitate integration with other components (e.g., the AIA rApps). 

4. Integration with Non-RT RIC Workflow: The output of the function is a JSON object containing the 
selected model’s name, endpoint, project, accuracy, energy consumption, and energy savings 
compared to the least efficient viable model that feeds into downstream processes.  

By automating model selection with a dual focus on accuracy and EE, this function addresses a key challenge 
in AI-driven radio resource control: balancing computational performance with sustainability. Its deployment 
within the Non-RT RIC exemplifies how intelligent orchestration can enhance the scalability and efficiency of 
cellular networks. The design of the function also highlights the role of metadata (e.g., labels like r2_score 
and total_energy_wh) in enabling cross-component interoperability within the O-RAN architecture and 
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directly contributing to BeGREEN’s goal of intelligent, efficient radio control. Demonstration and evaluation 
of this feature will be included in the PoC1 demo within WP5.  

2.3 Validation of the Intelligence Plane 
This section details functional validations and benchmarks of the Intelligence Plane implementation done 
through different PoCs and prototypes. First, we benchmark the AI Engine during model training and serving. 
Although there is an evident relationship with the hardware capabilities, the analysis provides some relevant 
insights regarding the trade-off between energy consumption and performance. We then validate the 
automated generation of datasets in the AI Engine datalake using the R1 interface and producer rApps. Next, 
we present the integration of the Non-RT and Near-RT RICs. Then, the conflict mitigation performed at the 
Near-RT RC is detailed, which manages conflictive A1 policies. Finally, the integration of RIS and Intelligence 
Plane is described in detail and evaluated.  

 AI Engine Benchmark: training 

This section describes the procedure used to characterize the power consumption, the CPU usage and the 
performance obtained when training ML models in the AI Engine. Concretely, we characterized several multi-
output classifiers from which we chose the one which is later used to address the energy-efficient 5G carrier 
on/off switching in section 3.2. This is aligned with the results obtained in BeGREEN D2.3 [19] (Section 4.8), 
which concluded that energy-saving strategies should contemplate QoS aspects, since those can impose 
significant constraints on the switch off opportunities.  

The multi-output models are trained to output six binary decisions, related to the defined QoS levels. We 
compare in total four different models that differ either in the model type or in the number of input features, 
𝑛𝑛. We begin by comparing two different model types (low-complex and mid-complex), which are trained 
with 𝑛𝑛 = 15 input features and three weeks of data, which represent around 400.000 training samples.  

The first one is the Ridge classifier5, which solves a closed-form solution using the Normal Equation or an 
optimization method like the gradient descent, which typically converges fast as it minimizes a quadratic 
function. The second one is the Logistic Regression classifier, which we already used in BeGREEN D4.2 [2] as 
a simple output model to decide 5G carrier on/off switching. This latter uses iterative methods like Newton’s 
method or the Stochastic Gradient Descent (SDG) method, which minimize the log-loss function, a non-
quadratic function, and requires a higher number of iterations to converge. From a general perspective, the 
Ridge Classifier should require less training time, but the Logistic Regression should provide better 
performance.  

After this first comparison, we reduce the number of input features twice and compare two reduced Logistic 
Regression models to see how this affects the training process. The comparisons we present are based on 
the following metrics: 

● Power consumption: average consumption of the full hardware6. 

● Average CPU usage: average usage of the 12 virtual CPUs the hardware is composed of. 
● Training accuracy: measured as the F1 score, the precision and the recall obtained. 

To extract the power consumption and CPU usage metrics we use some bash commands that are based on 
the “powerstat” and “mpstat” linux commands. Those commands allow us to export the results obtained 
during the training process into a Comma-Separated Values (CSV) file that we later process using Python.  

 
5 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html 
6 Intel NUC10i7FNH, i7-10710U CPU (12 vcores, up to 4.2GHz), 64 GB RAM 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html
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Figure 2-10: AI Engine Benchmark - Ridge Classifier power consumption (top), and CPU usage (bottom) 

The ML models are trained on an MLRun instance in the same server. When the training finishes, MLRun 
provides the model performance metrics regarding accuracy. To provide statistical diversity we repeated all 
the experiments three times, showing as a result the average and standard deviation obtained across them.  

Figure 2-10 and Figure 2-11 show the power consumption (top) and the CPU usage (bottom) for the Ridge 
and Logistic Regression classifiers, respectively. As expected, the Ridge classifier converges faster (∿ 20s) 
than the Logistic Regression classifier (∿ 120s), and the impact on the power consumption and CPU usage is 
much lower. However, Figure 2-12, which captures the performance obtained for all tested models, shows 
that the Ridge classifier is one point below in the obtained precision, four points below in the obtained recall 
and three points below in the F1 score.  

Since the total energy consumption of the training process for the Logistic Regression classifier was low (50W 
on average during 120s, i.e., 1.67 Wh) and it was obtaining better results, we decided to perform a feature 
importance analysis to reduce the number of input features to see if the training time could be reduced 
without impacting the performance. First, we erased the five less important features from the input set, 
leaving a total of ten input features, and then we just left the 6 more important features for the carrier on/off 
switching use case.  
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Figure 2-11: AI Engine Benchmark - Logistic Regression Classifier power consumption (top), and CPU usage (bottom) 

 
Figure 2-12: AI Engine Benchmark - Performance metrics evaluation for the different tested models 

Figure 2-13 and Figure 2-14 show the power consumption results for the Logistic with 𝑛𝑛 = 10 and 𝑛𝑛 = 6, 
respectively. Reducing the number of input features decreases the training time and consequently the power 
consumption and the CPU usage increase. Indeed, Figure 2-12 shows that while reducing from 𝑛𝑛 = 15 to  
𝑛𝑛 = 10  reduces the training time from 120s (1.56Wh) to 90s (1.19 Wh), it has no impact in terms of 
performance. Reducing to  𝑛𝑛 = 6 makes the Logistic Regression classifier to lose some accuracy points but 
still performs better than the Ridge classifier while reducing training time and power consumption up to 0.53 
Wh). Therefore, we decided to use the latter model, i.e., Logistic Regression classifier with 𝑛𝑛 = 6, as the one 
used to address the carrier on/off switching that will be evaluated in section 3.2. 
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Figure 2-13: AI Engine Benchmark - Logistic Regression Classifier power consumption (n=10) 

 
Figure 2-14: AI Engine Benchmark - Logistic Regression classifier power consumption (n=6) 

Finally, with the selected model, we performed a further test to evaluate whether reducing the CPU 
frequency during training could provide any benefit in terms of power consumed. Figure 2-15 and Figure 
2-16 show the comparison between 3 GHz (high frequency) and 1 GHz (low frequency). Note that previous 
tests were performed using dynamic frequency setting by the powersave CPU governor.  

 
Figure 2-15: AI Engine Benchmark - Logistic Regression Classifier with n=6 and CPUs at high frequency 
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Figure 2-16: AI Engine Benchmark - Logistic Regression Classifier with n=6 and CPUs at low frequency 

As expected, we observe that power consumption at low frequency is much lower but extends for a greater 
period of time. Therefore, we computed the energy consumption (Wh) according to Equation (2-1) for both 
cases: 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 (𝑊𝑊)  ·  𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑠𝑠))  ÷  3600𝑠𝑠 (2-1) 

● High frequency: 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  (44𝑊𝑊 ·  40𝑠𝑠)  ÷ 3600𝑠𝑠 ≃ 0.51 𝑊𝑊ℎ  

● Low frequency: 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  (14𝑊𝑊 ·   125𝑠𝑠)  ÷ 3600𝑠𝑠 ≃ 0.48 𝑊𝑊ℎ  

Therefore, in terms of total energy consumption there seems to be no benefit from training at low frequency. 
However, comparing the power consumed during the training to the baseline consumption of the hardware 
leads to higher differences in high frequency case. Considering this delta, the results show that training at a 
high frequency doubles the energy consumption compared to the low frequency case. Therefore, when 
compared to the baseline consumption of the equipment, low CPU frequency is better in terms of energy 
expenditure. This suggest that CPU frequency policies which consider server and training workloads, like the 
proposed in section 3.4 for the UPF, could benefit energy savings.  

● High frequency: 𝛥𝛥𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  (26𝑊𝑊 ·  40𝑠𝑠)  ÷ 3600𝑠𝑠 ≃ 0.29 𝑊𝑊ℎ  

● Low frequency: 𝛥𝛥𝛥𝛥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =  (4𝑊𝑊 ·   125𝑠𝑠)  ÷ 3600𝑠𝑠 ≃ 0.14 𝑊𝑊ℎ  

 AI Engine Benchmark: serving 

The AI Engine and the Non-RT RIC must ensure that data and ML model outputs are exposed with enough 
granularity to implement Non-RT control loops. As was discussed in BeGREEN D4.2 [2], the functions 
deployed in the AI Engine can lead to bottlenecks according to the workload in terms of consumer rApps or 
control loop intervals. However, note that Nuclio allows serverless deployments on Kubernetes, what will 
ensure scalability in production environments consisting of distributed servers. Nevertheless, the provided 
benchmark in a single server7 highlights some relevant trade-offs of the developed functions.  

We first repeated some of the experiments that were provided in BeGREEN D4.2 [2], comparing the 
performance of two predictors (energy and load per cell) based on the XGBOOST model. We calculated the 
excess delay as the difference between the required period and the measured period, according to the 
number of consumers, of jobs and the period.  

 
7 Intel NUC10i7FNH, i7-10710U CPU (12 vcores, up to 4.2GHz), 64 GB RAM 
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Figure 2-17: AI Engine Benchmark - Jobs latency with an increasing number of consumers (1 job) 

 
Figure 2-18: AI Engine Benchmark - Jobs latency with an increasing number of consumers (2 jobs) 

As depicted in Figure 2-17 and Figure 2-18, the latency increases with the workload of the inference services 
in terms of request per second: i.e., more consumers and/or jobs, and less interval between requests. In 
BeGREEN D4.2 [2], we analysed this increase and found that it was caused by the model inference procedures. 
For instance, when serving simpler functions, such as the energy score, we did not observe this trade-off.  

In the case of the energy rating function, since it requires to gather historical data from the datalake, it can 
lead to longer latencies which may impact excess delay. We characterized also its performance in the AI 
Engine according to the number of consumers. In the first experiment, the number of cells was fixed to 5 
and the job period to 10 seconds, while we considered different ROP limits. Figure 2-19 shows how the excess 
delay significantly increases with the number of consumers, especially with high limit values since the 
number of considered ROPs is higher. Recall that the considered dataset contains data with a granularity of 
15 minutes; therefore, the 600 limit corresponds to almost one week of data. 

We also evaluated the impact of increasing the number of cells with a fixed limit ROP (240), number of 
consumers (10) and job period (10 seconds). As depicted in Figure 2-20, while latency seems to increase with 
the number of cells, the increment is marginal compared to the effect of increasing the limit parameter.  
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Figure 2-19: AI Engine Benchmark: energy rating latency with an increasing number of consumers and variable limit 

 
Figure 2-20: AI Engine Benchmark - Energy rating latency with an increasing number of cells 

We next characterize the impact of model serving on the resource consumption of the AI Engine host. This 
helps to fully analyse the implications of the utilization of AI to enhance energy efficiency and to understand 
the experimented bottlenecks in the server. We fixed the job period to 1 second and the number of jobs per 
consumer to 2 (load and energy predictors), and characterized the delay, the power consumption and the 
CPU utilisation of the AI Engine according to the number of consumer rApps. Figure 2-21 illustrates the 
results with the default CPU governor (i.e., powersave). Recall that the AI Engine server begins to act as a 
bottleneck when implementing 1-second control loops with 20 consumers, as CPU usage reaches its limit. 
Consequently, with 40 consumers, delays further increase. The power consumption of the server also 
stabilizes near its TDP limits. 
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Figure 2-21: AI Engine Benchmark – Resource utilisation during inference with an increasing number of consumers 

(variable CPU frequency) 

Figure 2-22 shows the equivalent results when fixing the CPU frequency to a low value (i.e., 1GHz). In this 
case, workload reaches server’s CPU utilisation limit after 5 consumers, leading to high delays in the case of 
10, 20 and 40 consumers. On the contrary, the power consumption remains stable and very low due to the 
low CPU frequency. Conversely, Figure 2-23 illustrates results when using a fixed higher CPU frequency (i.e., 
3 GHz). Notably, delay performance is similar to the CPU free mode case depicted in Figure 2-21, but power 
consumption gets decreased by avoiding CPU frequency peaks (up to 4.7 GHz in this server). As described in 
section 2.3.1, these results suggest potential benefits of CPU frequency management policies for MLOps, 
following a similar approach to that outlined in section 3.4 for servers hosting the UPF. Additionally, in 
production deployments, the serverless Kubernetes-based architecture of the AI Engine could be leveraged 
to deploy multiple function replicas on servers operating at lower CPU frequencies, potentially increasing 
the EE of the system.  

Finally, we also analysed the impact of the number of input features on the performance of the Logistic 
Regression classifier described in section 2.3.1. Notably, as shown in Figure 2-24, and compared to previous 
results with xgboost-based predictors and the energy rating, the latency performance remains very low 
independently of the number of consumers. Accordingly, same occurs with power consumption and CPU 
usage, confirming the absence of bottlenecks while serving these models. Results also indicate that the 
number of input features, i.e., the model complexity, does not seem to impact the serving time or the 
consumption of resources during inference. This confirms that model selection function, introduced in 
section 2.2.4, should mainly focus on the trade-off between the resources consumed during training 
operations and the accuracy metrics of the models.   
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Figure 2-22: AI Engine Benchmark – Resource utilisation during inference with an increasing number of consumers 

(low CPU frequency)  

 

 
Figure 2-23: AI Engine Benchmark – Resource utilisation during inference with an increasing number of consumers 

(high CPU frequency) 
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Figure 2-24: AI Engine Benchmark – Performance of classifiers during inference according to the number of 

consumers and input features 

 Dataset generation 

To automate the generation of datasets according to exposed network KPIs, we have developed a producer 
rApp which enables KPI collection, processing and uploading to the AI Engine datalake, which is based on 
Minio8. The creation of dataset jobs leverages the producer-consumer paradigm enabled by the R1 interface, 
which allows several consumers to initiate parallel dataset jobs with different configurations for data 
retrieval and storage. Dataset jobs can be generated manually through the Non-RT RIC API (e.g., by AI 
developers) or automatically by rApps. For instance, AIA rApps may initiate a dataset job for enabling 
retraining procedures, for instance after monitoring performance degradation or according to a policy aiming 
at using updated data.  

Figure 2-25 shows the definition of the dataset information type in R1/ICS, which is then served by the 
“Dataset Producer rApp”. As illustrated by the parameters, the job definition allows to configure the duration 
of the job and the period of the data, which is used when generating the secondary jobs required to obtain 
the data. These jobs are defined in the data_description field, providing a list of information types and the 
parameters required to create them according to their definition in R1/ICS.  

The gathered data is stored in CSV format with timestamps. CSV files of maximum size chunk_size rows are 
generated and uploaded during data obtention to avoid the generation of huge files which would complicate 
the storage and uploading procedure. Bucket and file prefix names are used to identify the dataset. The latter 
is combined with a timestamp to identify the different data segments or CSVs of a campaign.  

Figure 2-26 illustrates an exemplar workflow, involving the rApp exposing KPMs from the near-RT RIC. As 
shown in the workflow, the dataset rApp manages the life cycle of secondary jobs through R1/ICS.  

 

 
8 https://min.io/ 

https://min.io/
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Figure 2-25: Dataset generation service - Dataset information type 

 
Figure 2-26: Dataset generation service - Exemplar workflow 
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Figure 2-27: Dataset generation service - Jobs generated in the ICS/R1 after requesting the dataset job 

 
Figure 2-28: Dataset generation service - Dataset job  
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This workflow is initiated by creating a job through the non-RT RIC API, which contains the parameters 
depicted in Figure 2-28. As mentioned, the data_description field contains the information needed to create 
the secondary job to gather the KPMs, of type kafka_kpm_cell_drax, provided by the specific rApp. Figure 
2-27  shows both active jobs in the R1/ICS DME service.  

Figure 2-29 and Figure 2-30 depict the generated bucket and the uploaded CSV files in the Minio GUI, while 
Figure 2-31 shows an example of the content of a CSV with the gathered metrics and correspondent 
timestamps and identifiers.   

 

 
Figure 2-29: Dataset generation service - Minio buckets  

 

 

Figure 2-30: Dataset generation service - Minio CSVs 
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Figure 2-31: Dataset generation service - Example of generated CSV 

Once finalized (according to the parameter limit_secs), the dataset Producer rApp send a notification to the 
consumer (the non-RT RIC API in the example), stops the secondary jobs (KPM in the example) and waits for 
the job deletion by the consumer.  

This service is being exploited to generate the required datasets for PoC1 demonstration, which will be 
provided in BeGREEN D4.4.  

 RICs integration 

The baseline functionalities of BeGREEN’s Non-RT RIC, as summarized in Figure 2-32, were presented in 
BeGREEN D4.2 [2]: rApp life cycle management (LCM), Data Management and Exposure (DME) through 
R1/ICS, rApps as data produces (including Assist rApps exposing the AI Engine) and rApp as data consumers 
(including RAN control rApps). In this deliverable it’s reported the integration of the Non-RT and Near-RT 
RICs, which required two main functions: Near-RT RIC registration and A1 policy management.  
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Figure 2-32: Validation of the Intelligence Plane - BeGREEN SMO and Non-RT RIC REST API - initial validation [1] 

The first function allows to register the Near-RT RIC and specify the communication protocols. In the case of 
dRAX, Kafka is used and therefore, as depicted in Figure 2-33, the required topics to subscribe to KPM 
statistics and to send A1 policies are defined.  

 
Figure 2-33: Validation of the Intelligence Plane - Near-RT RIC registration 
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Figure 2-34: Validation of the Intelligence Plane – Energy Saving A1 policy instance 

The A1 policy management functions deal with the registration of A1 policy types and with the generation 
of A1 policy instances. While the registration of A1 policy types is usually done manually, A1 policy instances 
are generated and managed by the control rApps. In BeGREEN we focused on the implementation of the 
Energy Saving policy defined in BeGREEN D4.2 [2]. The policy extends the energy saving policy of O-RAN by 
introducing the Energy Score objective and the Policy Priority field. The schema of the policy, which is used 
to validate outgoing (Non-RT RIC) and incoming policy instances (Near-RT RIC), can be found in the Annex I. 
Figure 2-34 shows an example of an Energy Saving policy instance sent to a specific cell.  

Regarding the collection of KPMs, the KPM producer rApp gathers this data from the dRAX Kafka Bus, 
exposing available metrics to any rApp requiring them. Figure 2-35 shows an example of the monitored cells 
and metrics during experiments.  

Finally, we have also implemented the Energy Rating Assist rApp, being used to expose the energy rating 
function hosted in the AI Engine to other rApps. Figure 2-36 depicts the data model of the energy rating 
information type, which expects as inputs the list of cells, the period between ratings and the historical limit 
of period to be considered to compute the rating among cells. The output is generated by the energy rating 
function, as was defined in 2.2.1. 
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Figure 2-35: Validation of the Intelligence Plane – KPM producer rApp 

 
Figure 2-36: Validation of the Intelligence Plane – Energy Rating Assist rApp 

 Conflict mitigation 

This section describes the validation of conflict mitigation within the Intelligence Plane scope. Figure 2-37 
illustrates the dRAX conflict mitigation dashboard, which integrates the A1 policies received from the Non-
Real-Time RIC. In the upper section, the dashboard displays the A1 policies applied to the system, detailing 
the scope of affected cells, objectives, and policy priorities, as outlined in BeGREEN D4.2 [2] and shown in 
Figure 2-38.  
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Figure 2-37: Conflict mitigation – Near-RT RIC Grafana dashboard - General Dashboard 

 
Figure 2-38: Conflict mitigation – Near-RT RIC Grafana dashboard - A1 policies section 

The next section of the dashboard presents a comparison between the number of actual conflicts and the 
avoided conflicts, along with the timestamps of their occurrence. This is detailed in Figure 2-39. Further 
below, the conflict guidance messages are detailed, indicating whether a conflict was detected and if it was 
successfully mitigated. The bottom section of the dashboard displays network performance metrics, as 
described in BeGREEN D4.2 [2]. These include general KPIs per cell, such as energy savings, power 
consumption or the energy score, as depicted in Figure 2-40.  
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Figure 2-39: Conflict mitigation – Near-RT RIC Grafana dashboard - Conflict Management Section 

 
Figure 2-40: Conflict mitigation – Near-RT RIC Grafana dashboard - General KPI per cell section. 

For validation, we used the scenario described in BeGREEN 2.2 [20] and depicted in Figure 2-41, where six 
cells serve 20 UEs. The Non-RT RIC applies an energy efficiency policy of 100% to four cells (Cell 1, Cell 3, Cell 
4, and Cell 5), reverting to 0% after two minutes. This transition is intentionally designed to trigger conflicts 
between the Energy Savings xApp and the Smart Handover xApp. To assess the effectiveness of the Conflict 
Manager, a set of measurements was conducted without the system activated, followed by another set with 
the Conflict Manager enabled, allowing for a direct comparison of its impact on conflict resolution.  
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Figure 2-41: Conflict mitigation – Emulated scenario based on Adastral Park deployment 

The Energy Saving xApp, upon receiving a policy of 100% of energy savings, emits a restriction message to 
the Smart Handover (SH) xApp to indicate that these resources (cells) are restricted. Similarly, when a policy 
of 0% energy savings arrives, the Energy Saving xApp issues an unrestricted message to the affected cells 
every time that the cell is being turned on. The restricted/unrestricted messages are within the authority of 
the xApps, following the internal policies of the Policy Handler. The target xApp must process these messages 
and implement a logic to handle the restriction accordingly. In this case, the SH xApp, after deciding which 
users should be handed over, double-checks the restricted cells. If the Conflict Management system is not in 
place, it proceeds as usual and issues the handover command. However, if the Conflict Manager is active, 
the command is not issued to the RAN. Additionally, if a resource is restricted, the SH xApp sends a conflict 
detected message to the conflict detection system. When the Conflict Manager is in place, this message is 
labelled as “Conflict Avoided”; otherwise, it is marked as “Conflict Not Avoided”, as shown in Figure 2-42.  

 

 
Figure 2-42: Conflict Mitigation - Example of conflict detection and avoidance 
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Figure 2-43: Conflict Mitigation – Example of application and impact on energy efficiency 

 RIS validation 

As discussed in section 2.1.4, besides the opportunities brought by smart surfaces in communication systems, 
RIS have also emerged as a promising ISAC building block for next-generation indoor positioning systems. 
Awareness of UE location and mobility, allows for a considerably more effective deployment of these RAN 
energy-saving strategies, culminating in reduced transmission overhead and optimized power allocation. For 
example, ISAC positioning solutions can enable a 50% reduction in beam measurements for energy-efficient 
beam management and facilitate decreased Channel State Information (CSI) reporting, which conserves 
power system-wide. 

Current indoor positioning solutions using smart surfaces estimate user locations by dynamically probing 
different reflection configurations from a precomputed/pre-calibrated codebook, searching for 
configurations that maximize the gain of the received communication signal [21][22]. However, current 
approaches face several critical challenges that hinder their performance and scalability such as i) reduced 
resolution because of the space constraints and sub-6GHz wavelength, ii) low-gain changes due to the 
predominance of the direct path, and iii) phase misalignment because of the interferences that may be 
created at the receiver between the reflected signal and the direct path. 

To showcase the integration of RIS with the BeGREEN Intelligence Plane Architecture, we present here an 
RIS-enabled ISAC solution called “Echoes” that addresses the previous challenges. Echoes is an indoor 
location system that leverages the reconfiguration capabilities of smart surfaces as well as the flexibility of 
future mobile systems based on O-RAN architecture, such as the BeGREEN architecture. In this sense, Echoes 
is able to provide the position of one (or more) UEs connected to a gNB (in our case, a 5G small cell) with the 
help of a RIS in an indoors scenario in the sub-6GHz band, where the RIS gain is low, and the direct path is 
strong.  

To do so, Echoes infers the received signal phase solely from power measurements of reference signals used 
to measure the uplink channel (more precisely using the metric L1M-UL-SRS-RSRP available from the E2SM-
KPM). Echoes achieves this by exploiting an inherent property of RIS: steering configurations are not singular, 
and introducing a constant phase offset to all elements achieves the same intended reflection direction but 
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with a different reflected phase. In this line, Echoes combines the sensed direction of a user with the angle-
of-arrival (AoA) estimation to estimate the position of a user in a sensing area. 

 System Model 

Echoes employs a model-based approach for indoor localization, leveraging the combined capabilities of a 
small cell and a RIS to estimate the position of users within a sensing area. As depicted in Figure 2-44, we 
consider a user (TX) within the sensing area along the direction (𝜃𝜃𝑢𝑢𝑅𝑅,𝜑𝜑𝑢𝑢𝑅𝑅) with respect to the RIS reference. 
Also, the same user is oriented horizontally with an angle, Θ𝑢𝑢ℎ, and vertically with an angle, Θ𝑢𝑢𝑣𝑣 , from the 
small cell receiving antenna array.  

To know how to configure the smart surface, we can derive the optimal phase shifts that the unit cells of a 
smart survey should apply to reflect an incoming signal from (𝜃𝜃𝑡𝑡,𝜑𝜑𝑡𝑡)towards (𝜃𝜃𝑟𝑟,𝜑𝜑𝑟𝑟) by compensating their 
phase difference. This can be done by modelling the smart surface configuration with its corresponding 
steering vector model, which can be summarized as: 

𝜃𝜃𝑛𝑛  = arccos(𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑟𝑟) (2-2) 

𝜑𝜑𝑛𝑛  = arcsin(𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑𝑟𝑟) (2-3) 

To navigate the possible combinations of unit cells’ phase shift configurations, it is a common practice to 
compute a configuration codebook, which is a set C = {𝐶𝐶𝑘𝑘}, where |C| = K. This configuration codebook 
consists of precomputed phase shifts configurations that allow steering an incident wave (𝜃𝜃𝑡𝑡,𝜑𝜑𝑡𝑡) towards a 
specific direction (𝜃𝜃𝑟𝑟,𝜑𝜑𝑟𝑟). Codebook configurations 𝐶𝐶𝑘𝑘 are generated by discretizing a range of values for 𝜃𝜃𝑛𝑛 
and 𝜑𝜑𝑛𝑛. Please note that the unit cell configurations are not singular, so if we apply the same phase offset 
𝜓𝜓0 to all cells, we still maximize the power of the reflected signal, but we are changing its phase. 

Echoes periodically probes all the configurations 𝐶𝐶𝑘𝑘 of the smart surface’s codebook using a finite set of Ψ 
offset values for each configuration. Since, in mobile networks, users periodically transmit reference signals 
in the uplink, the network constantly measures the received power per receiving antenna to estimate the 
quality of the channel. In 5G-NR, UEs periodically transmit the Uplink Sounding Reference Signal (UL SRS) on 
the uplink, allowing the serving gNB to estimate the quality of the channel at different frequencies. UL SRS 
are periodically transmitted as often as every 2nd subframe (2 ms) or as infrequent as every 16th frame (160 
ms). The UL SRS are transmitted on the last symbol of the subframe.  

 
Figure 2-44: RIS Validation - Echoes Scenario 
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Based on the received power measurements from the UL SRS, the serving gNB schedules uplink transmissions 
on resource blocks of good quality. O-RAN supports monitoring the values of the received power of the UL 
SRS [23][24], measuring them periodically for the different UEs and antennas in the serving gNB. 

Echoes uses these measurements to estimate the position of a user in three steps: 

• Step 1: The first step is required to calculate the direction of the receiver from the RIS point of 
reference (𝜃𝜃𝑢𝑢𝑅𝑅 ,𝜑𝜑𝑢𝑢𝑅𝑅 ) To do so, Echoes searches for the set of configurations C* = {𝐶𝐶𝑘𝑘(𝜓𝜓0𝑚𝑚)} that 
maximizes the RSRP in each antenna m of the small cell. Afterwards, the M measurements using (2-2) 
and (2-3) are averaged to estimate (𝜃𝜃𝑢𝑢𝑅𝑅, 𝜑𝜑𝑢𝑢𝑅𝑅). We assume the angle RIS – gNB (𝜃𝜃𝑠𝑠𝑅𝑅, 𝜑𝜑𝑠𝑠𝑅𝑅) is known. 

• Step 2: The second step relies in the concept that the difference between the estimated offset values 
that maximize the RSRP in each antenna pair m and m’ (with the best 𝐶𝐶𝑘𝑘), is approximately the phase 
difference of a signal arriving to m and m’. Echoes exploits this observation to predict the AoA 
between the small cell and the user, and obtain Θ𝑢𝑢ℎ  and Θ𝑢𝑢𝑣𝑣  using: 

Θ  =   arcsin �
∠𝑠𝑠𝑚𝑚  −  ∠𝑠𝑠𝑚𝑚′

𝜋𝜋
� (2-4) 

(2-4) is based on the fact that a wave traveling an extra distance 𝑑𝑑 changes its phase by an amount 

Δ𝜓𝜓  = 2𝜋𝜋  𝜆𝜆
𝑑𝑑

 , which is equal to the phase difference between the signal 𝑠𝑠 arriving at antenna m, and 
the signal 𝑠𝑠 arriving at the antenna m’, i.e., Δ𝜑𝜑  = ∠𝑠𝑠𝑚𝑚  −  ∠𝑠𝑠𝑚𝑚′ . Echoes calculate this phase 
differences by adjusting the offset 𝜓𝜓0of the best 𝐶𝐶𝑘𝑘 to maximize a fitted sinusoidal function. The 
offset 𝜓𝜓0 that maximizes the RSRP value in that function, will align the phase of the reflected wave 
with the phase of the direct wave, i.e.: 

𝜓𝜓0𝑚𝑚 − 𝜓𝜓0𝑚𝑚
′ = 𝜓𝜓𝑑𝑑(𝑢𝑢, 𝑠𝑠𝑚𝑚) − 𝜓𝜓𝑑𝑑(𝑢𝑢, 𝑠𝑠𝑚𝑚′) + 𝜓𝜓(𝑠𝑠𝑚𝑚)  −  𝜓𝜓(𝑠𝑠𝑚𝑚′), (2-5) 

where 𝜓𝜓𝑑𝑑(𝑢𝑢, 𝑠𝑠𝑚𝑚) − 𝜓𝜓𝑑𝑑(𝑢𝑢, 𝑠𝑠𝑚𝑚′) is the phase difference of the signal s arriving at antenna m and m’ 
respectively – which we can use directly to compute (2-4) – and 𝜓𝜓(𝑠𝑠𝑚𝑚)  −  𝜓𝜓(𝑠𝑠𝑚𝑚′) is the difference 
between the phase alteration induced by the multi-path effect. Here we assume that the direct path 
between the TX and the RX dominates any multi-path contribution and that to reduce the effect of 
the multi path, we compute multiple estimations of 𝜓𝜓0𝑚𝑚 − 𝜓𝜓0𝑚𝑚

′
. 

• Step 3: Once these angles have been calculated (Θ𝑢𝑢ℎ , Θ𝑢𝑢𝑣𝑣 ) from Step 2 and (𝜃𝜃𝑠𝑠𝑅𝑅 ,𝜑𝜑𝑠𝑠𝑅𝑅) from Step 1, 
Echoes geometrically locates the user within the sensing area, searching the best position (x,y,z) that 
minimizes the sum of the mean squared error |𝑒𝑒|2 of all the angle estimations. To do so, Echoes 
follows an optimization problem where all solutions lie in the Euclidean space. Since |𝑒𝑒|2 is 
continuous and convex in the sensing area, it can be solved using numerical methods. 

 O-RAN Integration 
Echoes considers an O-RAN enabled indoor scenario that consists of a gNB (small cell) covering the desired 
sensing area and a RIS that allows for the estimation of the users’ positions. To integrate the RIS into the 
BeGREEN architecture, we follow the approach described in BeGREEN D4.2 [2] and D3.3 [10], as illustrated 
in Figure 2-45.  

First, we consider an external application that requires user location to be deployed in SMO (e.g., as an rApp) 
or outside of the RAN architecture. That positioning application interacts with the Echoes xApp, which is 
deployed in the near-RT RIC and implements the core functionalities of Echoes as described above The 
Echoes xApp performs the following functions: i) receiving L1M-UL-SRS-RSRP measurements from each small 
cell antenna via the E2 interface, ii) reconfiguring the smart surface with a given configuration, and iii) 
estimating user positions once Echoes has collected all the necessary measurements. 
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Figure 2-45: RIS validation - Echoes’ O-RAN architecture integration and intuitive description 

For the use case of Echoes there is not direct RIS control from the non-RT RIC or the near-RT RIC, meaning 
that although defined by the BeGREEN architecture, O1+ and E2+ are not used. Instead, the control is 
performed in-site through the gNB (small cell). The small cell, which may be deployed in edge O-Cloud 
platform is connected to the RIS through the F1-x interface [25] (a wired connection, such as an Ethernet or 
USB cable). Within the small cell, there is deployed a dApp [26] that enables the reconfiguration of the smart 
surface locally according to a predefined codebook configuration and offset 𝐶𝐶𝑘𝑘(𝜓𝜓0). 

To describe the Echoes positioning procedure, Figure 2-46 depicts Echoes operational workflow, which 
consists of the following four phases: 1) calling the Echoes in which the xApp receives a location subscription 
request, 2) listening to the Echoes in which the xApp subscribes to the power measurements of the uplink 
reference signal periodically sent from a user of the small cell, 3) tuning the Echoes in which the xApp 
reconfigures the smart surface via the dApp, and 4) grasping the Echoes in which the xApp runs the 
optimization algorithm to locate a user. In the following we detail each step: 

• Calling the Echoes: Echoes’ workflow starts when the xApp receives a location subscription request 
from the external application or rApp whose objective is to locate a user within the sensing area. 
The application may send a positioning service request using the A1 interface. 

• Listening to the Echoes: Echoes’s xApp subscribes to the periodic power level measurements of UL 
SRS per receiving antenna measured from the target UE. This measurement is available in the E2 
interface through the E2SM-KPM [27]. Therefore, Echoes uses the E2 interface to request the small 
cell the periodic metric reports of this metric with a Report Subscription Request, which the small 
surface will provide in the form of Report Indications. 

• Tuning the Echoes: Echoes’ core location estimation procedure is based on iteratively reconfiguring 
a smart surface according to an algorithm implementing Steps 1 and 2 as described above, while 
compiling all the necessary power measurements to infer the position of a user within the sensing 
area. To reconfigure the smart surface, Echoes’ xApp uses the proxy-like Echoes dApp co-located 
with the small cell. The dApp locally controls the smart surface at site, reconfiguring all its elements 
through the F1-x interface [28]. Echoes sends to the dApp the index k of a codebook configuration   
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Figure 2-46: RIS validation - Echoes workflow 

𝐶𝐶𝑘𝑘(𝜓𝜓0) and an offset value 𝜓𝜓0 to be applied. The interface between Echoes’s xApp and the dApp 
uses the standard E2 interface leveraging the E2AP sets of predefined procedures and services that 
enable the control communication. Over E2AP, Echoes expands E2SM enabling two smart surface-
specific service models, E2SM-SSC and E2SM-SSM, which were introduced in BeGREEN D4.2 [2] and 
D3.3 [10]. On one hand, E2SM-SSC allows for setting a given codebook configuration in the smart 
surface specifying azimuth, elevation and offset, i.e., 𝐶𝐶𝑘𝑘(𝜓𝜓0). On the other, E2SM-SSM supports the 
reporting of the status of the RIS, all supported codebook configurations and the current codebook 
setting currently configured. 

• Grasping the Echoes: Once Echoes has received all the necessary power level measurements, Echoes 
estimates the position of a user according to above description. Echoes procedure runs periodically 
to progressively improve the sensed positions, periodically sending the obtained position 
estimations to the subscribed application. 

 Echoes Results 
To assess Echoes performance realistically, we have established an experimental testbed. Figure 2-47-a 
illustrates the indoor testbed schematically, while Figure 2-47b illustrates a real deployment.  

The TX and RX were developed using two USRPs B210 devices operating with srsRAN [29]. The TX 
communication stack executes on a desktop PC, while the RX’s Distributed Unit (DU) and Central Unit (CU) 
run on the O-cloud edge server. Both RF front-ends operate at 5.3 GHz (wavelength λ = 5.65 cm). The RX 
uses two omnidirectional low-gain antennas spaced λ/2 apart, whereas the TX employs directional horn 
antennas. These horns were chosen to minimize scatterers in the testbed and ensure experimental 
consistency and reproducibility. The O-cloud server also hosts the O-RAN SC Near-RT RIC (i-release) [30], 
where Echoes operates as an xApp. Echoes gather uplink power measurements per antenna from the RX. 
The server connects to the smart surface via a USB interface (acting as the F1-x interface) and runs a dApp 
to manage codebooks and surface configurations. 
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Figure 2-47: RIS validation - Illustrations for the, a) testbed scheme design, and b) real deployment 

The smart surface is strategically positioned near the front wall to maximize spatial coverage for user 
localization. The RX (small cell) is placed at the opposite end of the room, aligned centrally with the surface 
to ensure broad coverage. The TX is situated between the surface and RX, with flexibility to reposition it for 
varied measurements. Notably, the TX, RX, and smart surface lie in the same horizontal plane, enabling 
position estimation using the two-antenna array.  Notice that we only probe configurations for the different 
values of the azimuth θ as having the TX and RX in the same plane sets the optimal elevation to ϕ = 0º. 
Echoes estimates the position using ( 𝜃𝜃𝑢𝑢𝑅𝑅 , Θ𝑢𝑢𝑅𝑅). 

The smart surface prototype in our testbed features a 10×10 grid of unit cells based on patch antennas, 
operating at 5.3 GHz. The patch antennas are spaced δ = λ/2 = 2.82 cm apart. Each unit cell supports a 3-bit 
phase shift configuration: the 000 setting deactivates the element, while the remaining 7 bit combinations 
apply phase shifts ψₙ = (2π/7)ₙn for n ∈ {0, ..., 6}, corresponding to ψₙ ∈ {0°, 51.42°, 102.85°, 154.85°, 205.71°, 
257.14°, 308.57°}. Deactivating all elements switches the surface to absorption mode. The prototype 
achieves a half-power beamwidth (HPBW) of ≈10° when reflecting signals toward a target direction. 

A far-field precomputed codebook manages configurations. Since each element only supports 7 discrete 
phase shifts, codebook values are rounded to the nearest ψₙ. When applying a global phase offset, it is 
constrained to multiples of ψₙ (n ∈ {0, ..., 6}). The codebook spans azimuth angles [−60°, 60°] and elevation 
angles [−45°, 45°], incremented in 5° steps, yielding 437 total configurations. Figure 2-48a demonstrates a 
configuration with θ = 30°, ϕ = 0°, and no offset, while Figure 2-48b -illustrates the same beam direction with 
an added ψ₀ = 51.42° offset.  

The first tests consist of evaluating the effect of adding a phase shift offset to all elements. The effect of 
adding an offset value creates a sinusoidal pattern on the received power gain. Figure 2-49 shows the 
normalized UL-RSRP measured for the two antennas at the RX. It is possible to clearly observe the sinusoidal 
pattern that different offsets create on the received gain. We also see that both sine functions are not in-
phase and precisely that observation is what allow us to measure the angle of arrival between a user and the 
receiver. 
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Figure 2-48: RIS validation - Codebook configuration with, (left) θ = 30º, ϕ = 0º and ψ = 0º, and (right) with θ = 30º, 
ϕ = 0º and ψ = 51.42º 

 

Figure 2-49: RIS Validation - Received power gain per antenna using the best phase shift offset value 

To test the localization performance of Echoes, we place the TX at multiple locations and analyze the UE 
positions estimated by Echoes. Figure 2-50 marks the actual UE positions with black dots, covering angular 
ranges θᵤᴿ ∈ [215°, 245°] and Θ𝑢𝑢ℎ  ∈ [27°, 73°], with distances from 1.3 m to 4.3 m relative to the smart surface. 
Since all components lie in the same plane, we limit Echoes’ codebook probing phase to configurations Cₖ 
with θ ∈ [−55°, 55°] and ϕ = 0°. Figure 2-50 also shows Echoes’ predicted locations (red crosses) for each TX 
position. The estimates align closely with the TX-to-smart-surface axis, indicating strong θᵤᴿ accuracy. 
However, minor variability arises along the TX-to-small-cell axis due to less precise Θₕᵤ calculations. Most 
predictions exhibit a systematic southward bias, with two outliers deviating from this trend. 

 
Figure 2-50: RIS validation - Predicted UE positions by Echoes in the 2D space. 
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The estimation error is due to two main factors. First, the codebook’s steering angle discretization of 5º 
ultimately limits the accuracy of estimating θᵤᴿ, resulting in a Mean Absolute Error (MAE) for θᵤᴿ is 2.15º. 
Second, the fact that we are only using one pair of antennas makes that the Θ𝑢𝑢ℎ  error is relatively high (with 
a MAE of 14.15º), limiting our ability to locate the TX in the different tested position. Using additional pairs 
of antennas would help us to reduce this error. Nevertheless, these errors allow Echoes to give a location 
estimation with a MAE distance error of 0.92 m. 

 Conclusion 

To validate the integration of RIS into the BeGREEN architecture, we have presented Echoes, an ISAC indoor 
localization system, which leverages the available metrics of an O-RAN small cell and a RIS to predict user’s 
positions within a sensing area. Precise user location is pivotal for enhancing 5G RAN energy efficiency, as it 
may enable critical power-saving mechanisms like adaptive beamforming, which focuses energy towards 
specific UEs, and intelligent cell sleeping based on real-time UE distribution. 

Echoes relies on the UL-RSRP signals and the available periodic KPM measurements in O-RAN to locate a user 
by suitably reconfiguring the smart surface using both the E2 and F1-x interfaces. Echoes adjusts the smart 
surface’s phase offsets to identify the user direction that optimizes receiver gain and compute the AoA 
between the user and small cell. We evaluated Echoes in a practical indoor 5G setup compatible with the 
BeGREEN architecture, highlighting its performance in uncontrolled, multipath-rich environments. Finally, 
we have detailed Echoes’ integration into the O-RAN framework, demonstrating its operational viability 
under real-world architectural constraints. The use of these UE location and mobility awareness solutions 
such as Echoes, within the BeGREEN architecture, may allow for significantly more effective implementation 
of RAN energy-saving strategies and lead to reduced transmission overhead or optimized power allocation. 
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 Final Evaluation of AI/ML-Assisted Procedures to Enhance Energy 
Efficiency 

This chapter presents the final evaluation of the AI/ML-assisted methods developed throughout this WP. 
Compared to previous deliverables, and for having a more consistent structure in this final deliverable, RIS 
and Intelligence Plane validations have been reported in Chapter 2. Additionally, contributions related to 
energy efficiency in ML models and the Intelligence Plane are detailed in Section 2.2. Consequently, this 
chapter focuses on the final validation of five AI/ML-assisted methods aimed at enhancing energy efficiency 
across the BeGREEN use cases: vRANs, real 5G NSA deployments, relay-enhanced RANs, edge nodes hosting 
UPFs, and edge nodes hosting AI services. Results highlight the benefits of the developed solutions and the 
application of AI/ML to enhance energy efficiency without impairing traffic performance.  

3.1 Compute resource allocation in vRAN 
As we explained in previous deliverables, the increased computing overhead has its roots in the lack of cache 
memory isolation. The computing overhead increases the total energy consumption of the vRAN platform. 
Figure 3-1 shows the relationship between the normalized energy consumption on top of the system’s 
baseline (i.e. idle) consumption of our vRAN platform as a function of the total computing load. The 
computing load and the energy are linearly related. Therefore, it is key to minimize the computing usage of 
our vRAN platform to keep operational energy costs low. In the previous deliverables, we developed a 
solution to dimension the computing capacity of a vRAN system, considering the increased computing usage 
due to the noisy neighbour problem.  

However, in previous deliverables we did not consider minimising the increased overhead but adapting to it. 
In this final deliverable, we seek to reduce the computing overhead as much as possible. We begin studying 
how isolating the different cache memory levels influences the total system computing consumption. We 
found that vBSs traffic demand is virtually orthogonal to using cache resources, i.e., vBSs use as much cache 
memory as possible. However, the utility of cache memory is different for different traffic demands. The 
vBSs with higher demands and Signal-to-Noise-Ratio (SNR) can reduce their computing usage more when 
they have more cache memory available. Thus, developing a solution that strategically allocates the cache 
memory resources to the different vBS instances according to their demands is key to minimize energy 
consumption. Due to the complex relationship between computing and radio resources, we propose a novel 
approach that can effectively allocate the cache resources to minimize the total computing usage and, 
consequently, reduce the energy consumption of vRAN platforms. 

 Cache memory isolation 

To evaluate the impact of cache memory resources on the noisy neighbor problem in vRANs’ energy 
consumption, we measured the computing usage and low-level cache metrics deploying a different number  

 
Figure 3-1: vRAN resource allocation - Energy consumption as a function of the computing load. 
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Figure 3-2: vRAN resource allocation - vRAN testbed 

of vBS instances in different scenarios in our vRAN platform. Figure 3-2 shows our experimental vRAN 
platform. Therein, we deploy the different vBS instances in an isolated pool of computing cores from an Intel 
Xenon E5-2650 v4 CPU @ 2.20GHz in a shared off-the-shelf server.  

Each vBS has its dedicated RF radio head connected to one UE, which is used to emulate the aggregated cell 
load. We configured the pool of computing cores to retain as much predictability as possible: (i) we isolated 
12 cores with 12 dedicated Last Level Cache (LLC) ways, (ii) the system can only use C0/C1 C-states and we 
turned off hardware P-states and (iii) we deactivated Hyper-threading. We then initiate bidirectional data 
flows, both uplink (UL) and downlink (DL), with maximum load and good wireless channel conditions 
between each vBS instance and different user equipment (UE). We consider the following scenarios:  

• Ideal. We compute the CPU usage scaling linearly the usage of a single vBS instance by assuming that 
the cache memory size also scales linearly.  

• No isolation. We deploy an increasing quantity of vBS instances without any cache memory isolation 
mechanism.  

• Pinning. L1 and L2 cache levels are dedicated per core. We pin different vBS instances to distinct 
cores to assess the impact on L1 and L2 cache isolation. To facilitate comparisons, the number of 
cores assigned to each vBS is given by: 

cores per vBS =  �
total cores

deployed vBSs�
 

where the total number of cores equals 12 and the number of deployed vBS increases from 1 to 5. 
Note that when 5 vBSs are deployed, each vBS is assigned to 2 cores and two free cores are left. 

• Pinning + LLC isolation. We perform the L3 cache allocation in the same manner as the CPU pinning. 
We allocate the total number of cache ways equally for every single vBS, i.e. the number of cache 
ways per vBS is given by: 

cache ways per vBS = �
total cache ways
deployed vBSs � 

In our platform, there are a total of 12 cache ways. We use Intel CAT to allocate the LLC cache ways 
to the corresponding computing cores. 

Figure 3-3 shows the measured computing usage in the different scenarios. We observe that, for the no 
isolation configuration, the computing usage increases by approximately 50% compared to the ideal case, 
increasing the energy consumption. This also impacts the IPC and MPKI, as shown in Figure 3-4and Figure 
3-5, respectively. We observe that the IPC decreases and the cache misses increase as more instances are 
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deployed. There is a sixfold increase in the cache misses when transitioning from 1 to 5 vBSs. This increase 
also impacts the number of cycles required to execute the same number of instructions, decreasing the IPC.  

The Pinning configuration shows a lower computing usage than the No isolation but still higher than the ideal 
case. The computing usage decrease is significant considering that L1 cache ways are approximately 100 
times lower in size than L3 cache ways and L2 cache ways are 10 times lower in size than L3 cache ways. In 
Figure 3-4 we can observe a higher IPC across any number of deployed vBSs compared to the No isolation 
scenario. However, Figure 3-5 shows the same number of cache misses for all the cases. This might seem 
shocking at first glance, but as we have previously detailed L1 and L2 cache way size is very low compared to 
L3.  

Finally, to study the effect of the L3 cache isolation. In Figure 3-3, the Pinning + LLC isolation configuration 
does not improve the computing usage. Specifically, the computing usage is the same for all the cases except 
for the case with 5 vBS, in which it is slightly higher. The reason behind this behavior is that we only allocate 
10 out of 12 L3 cache ways to all vBSs for the case of 5 vBSs, while in the Pinning configuration, all vBSs have 
all the L3 cache memory available, using on average 2.4 L3 cache ways. 

 
Figure 3-3: vRAN resource allocation - Comparison of the aggregated per-core usage with # of vBS instances 

showing the “No isolation”, the “Pinning” and the “Pinning + LLC isolation” scenarios.  

 

 
Figure 3-4: vRAN resource allocation - Instructions per cycle (IPC) with # of vBSs. 
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Figure 3-5: vRAN resource allocation - Misses per 1000 instruction (MPKI) with # of vBSs. 

 
Figure 3-6: vRAN resource allocation - LLC occupancy in % as a function of the total demand for different SNR cases 

in UL and DL. 

 LLC Occupancy and utility 

We now study how the allocation of LLC cache ways impacts the computing usage of a vBS instance. First, 
we measure the percentage of LLC cache memory used of the total LLC memory allocated to a vBS as a 
function of the traffic demand. Figure 3-6shows the LLC occupancy with 12 and 2 LLC cache ways for different 
SNR values and traffic demands in UL and DL. The high series depict the LLC occupancy with a high SNR 
environment while the low series depict the LLC occupancy with a low SNR environment. We can see that 
the total LLC occupancy is above 80% for uplink and downlink. Also, the LLC occupancy is almost orthogonal 
to the demand of the vBS, yielding an increase of a 2 − 6% when the demand goes from 10% to 100%.  

Figure 3-7 depicts the computing usage of a vBS as a function of the L3 cache ways when we deploy it using 
3 cores. Figure 3-8 depicts the computing usage for the different Modulation and Coding Schemes (MCSs) 
with a low traffic demand (i.e. 20% of the total demand) and high traffic demand (i.e. 100% of the total 
demand) for uplink and downlink. We observe that there are significant differences between the achievable 
computing usage reduction. For high traffic both in UL and DL, we can achieve a more significant computing 
usage reduction. On the contrary, a vBS that processes a low traffic demand can attain lower gains in terms 
of computing usage. We conclude that LLC resources have different utility depending on the vBS context.  

This contrasts with Figure 3-6 which shows that the vBS makes full use of the cache memory regardless of 
the demand. Thus, if there is no LLC cache allocation mechanism, all vBSs deployed will be using the same 
amount of LLC cache memory on average. It is key to strategically distribute the LLC cache ways among the 
vBSs deployed boosting its utility to minimize the computing usage and therefore the energy consumption 
depending on the traffic demands. 
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Figure 3-7: vRAN resource allocation - Computing usage as a function of the LLC allocated cache ways for different 

SNR and in UL and DL. 

 
Figure 3-8: vRAN resource allocation - Computing usage and decoding time of a vBS with max. UL and DL load with 

mild MCS over different SNR conditions. 

Quantifying the LLC cache memory utility is a challenging task. The LLC cache utility depends on the 
computing demands of the vBS which are influenced by various factors, including traffic demand in both the 
DL and UL, the signal-to-noise ratio (SNR) of each wireless link, and the specific MCS utilized for 
communication. All these elements interact in a complex manner [14], [6]. Figure 3-8a depicts the relative 
mean core usage of the vBS, and shows that, given a MCS, lower SNR regimes demand a higher amount of 
computing resources. The underlying reason is the iterative nature of the forward-error correction (FEC) 
algorithms – signals received with lower SNR require a higher number of FEC iterations to decode the 
transported codeword successfully. This is confirmed by Figure 3-8b, which shows the amount of time taken 
by the decoder to finish its task for every transport block. 

 Problem formulation 

We consider a vRAN platform comprising 𝑀𝑀cores computing cores and 𝑁𝑁LLC LLC cache ways. We consider that 
𝑁𝑁vBS vBS instances are deployed in the platform. Every vBS 𝑖𝑖 in the vRAN platform has both a UL and DL 
traffic demand denoted by 𝑑𝑑𝑖𝑖UL and 𝑑𝑑𝑖𝑖DL, respectively; a SNR 𝑠𝑠𝑖𝑖; and an MCS in UL and DL denoted by 𝑚𝑚𝑖𝑖

UL 
and 𝑚𝑚𝑖𝑖

DL, respectively, that the radio scheduler selects depending on 𝑠𝑠𝑖𝑖. The vBS 𝑖𝑖 has a set of isolated cores 
𝑃𝑃𝑖𝑖 such that |𝑃𝑃𝑖𝑖|  >  0 and a number of dedicated LLC cache ways 𝑛𝑛𝑖𝑖LLC , where n 𝑛𝑛𝑖𝑖LLC ≥ 1 ∀𝑖𝑖. We need to 
satisfy that ∑ 𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀cores and ∑ 𝑛𝑛𝑖𝑖LLC

𝑖𝑖 =  𝑁𝑁LLC. We define 𝑐𝑐𝑖𝑖 as the computing use of vBS 𝑖𝑖. We define 𝒙𝒙𝑖𝑖 ≔
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(𝑑𝑑𝑖𝑖UL,𝑑𝑑𝑖𝑖DL, 𝑠𝑠𝑖𝑖,𝑚𝑚𝑖𝑖
UL,𝑚𝑚𝑖𝑖

DL) as the context of the vBS 𝑖𝑖. Moreover, we define 𝑓𝑓𝑖𝑖 as the function that maps 𝒙𝒙𝑖𝑖 and 
𝑛𝑛𝑖𝑖LLC to the computing usage 𝑐𝑐𝑖𝑖. 

Finally, we define vector 𝜒𝜒 which concatenates the context vectors from all vBS as 𝜒𝜒 ≔ (𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁vBS). 
Also, we define 𝒫𝒫 ≔ (𝑃𝑃1, … ,𝑃𝑃𝑁𝑁vBS) and 𝒩𝒩 ≔ (𝑛𝑛1LLC, … ,𝑛𝑛𝑁𝑁vBS

LLC ) as the vectors with the core set allocation and 
the LLC cache ways allocation on a vRAN platform. Similarly, we define the function 𝑓𝑓 which maps (𝜒𝜒,𝒩𝒩)  to 
the total computing usage 𝐶𝐶vRAN ∈ [0,𝑀𝑀cores] of the vRAN platform. We define the problem of optimizing 
the computing set and the LLC allocation as: 

min
𝒩𝒩

𝑓𝑓(𝜒𝜒,𝒩𝒩) 

subject to �𝑛𝑛𝑖𝑖LLC

𝑖𝑖

=  𝑁𝑁LLC 

As explained in previous deliverables, the computing usage and the energy consumption are proportional. 
Thus, minimizing the computing usage function f also minimizes the total energy consumption. Note that, in 
our problem, the assignment of CPU cores to vBS 𝒫𝒫 is already given. We select a fixed value of 𝒫𝒫 based on 
our experimental insights and previous works on this topic as presented in the previous deliverables (see 
D4.2 [2] for more details). Note that, in the problem presented, the optimal LLC cache allocation depends on 
the context 𝜒𝜒, whose dimensionality increases depending on the number of vBSs. Moreover, the optimal 
action is also dependent on the number of active vBS, which may change over time. To avoid the exploration 
burden of learning algorithms (e.g., reinforcement learning) that can lead to suboptimal configurations, we 
decompose the problem and use a digital twin (DT) system. 

 MemorAI 

To solve the presented problem, we propose an optimization framework which we call MemorAI. This 
framework considers discrete decision intervals denoted by 𝑡𝑡 ∈  {1, 2, . . . ,𝑇𝑇}. At the beginning of each 
decision interval, our solution receives 𝜒𝜒(𝑡𝑡), and decides the optimal LLC allocation 𝒩𝒩∗(𝑡𝑡) across all vBSs, to 
minimize the energy consumption. MemorAI is composed of a set of DTs and a NN classifier. Figure 3-9 shows 
our optimization framework.  

Thanks to full vBS isolation via pinning it to dedicated cores and LLC cache ways allocation, we make the 
observation that 𝐶𝐶vRAN = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖  as there are no joint effects between vBSs. This observation implies that 
𝑓𝑓(𝜒𝜒,𝒩𝒩) = ∑ 𝑓𝑓(𝒙𝒙𝑖𝑖,𝑛𝑛𝑖𝑖LLC)𝑖𝑖 . As there is no interaction among vBS in terms of computing usage, we can create 
DTs of independent vBS. Thus, we can mirror their behavior in a safe and controlled environment for testing 
and learning. Each DT can model the particularities of each vBS (e.g., different implementations protocol 
stacks) and we can emulate the complex interactions of the full vRAN system. We create a DT using 
operational data from one vBSs. Using each vBS’s DTs, we can lower the time cost to generate a dataset for 
a number of vBS as we aggregate the results of each DT. Note that without the DTs, the amount of data 
needed to create a training dataset increases exponentially with the number of vBS (curse of dimensionality). 

 
Figure 3-9: vRAN resource allocation - MemorAI optimization framework. 



D4.3 – Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane 

64 

 
BeGREEN [SNS-JU-101097083] 

To create the DT of one vBS we used our vRAN platform to generate a training dataset with a fixed computing 
core set |𝑃𝑃| . Note that we select a set of cores such that vBS can correctly operate. This makes 𝑓𝑓𝑖𝑖  a 
continuous function. Each dataset sample contains a 4-tuple with (𝒙𝒙,𝑃𝑃,𝑛𝑛LLC, 𝑐𝑐). Using this dataset, we built 
up a DT using a NN which approximates 𝑐𝑐 using (𝒙𝒙,𝑃𝑃,𝑛𝑛LLC) i.e. it approximates 𝑓𝑓𝑖𝑖 minimizing the Minimum 
Squared Error (MSE). We denote the DT function as 𝑓𝑓𝑖𝑖D. Figure 3-9, also shows the DT training step (1). 

The DT allows us to evaluate the CPU usage of different configurations very accurately without having to use 
the real system. Therefore, we can perform an exhaustive search to find the optimal LLC allocation 𝒩𝒩∗ for a 

set of contexts (𝜒𝜒,𝒫𝒫). Note that the size of the set of possible LLC cache allocations is |𝑁𝑁| = �𝑁𝑁LLC−1
𝑁𝑁vBS−1

�. Figure 

3-9, shows how using the different DTs we generate the previous data set (2). Using this data set, we train a 
fully connected NN to predict 𝒩𝒩∗ for a given context (𝜒𝜒,𝒫𝒫). Specifically, we solve a multi-class classification 
problem using the cross-entropy loss function. We denote the classifier function as 𝑓𝑓C. Note that our solution 
is very flexible to changes in the system (e.g., upgrades in the implementation of the software stack, 
deployment of new vBSs, etc.). In those cases, after having the DT modeling, we can easily retrain the NN 
classifier offline without degrading the performance of the system. Finally, Figure 3-9, shows the classifier 
training step of our optimization framework (3). 

 Performance Evaluation 

In this section, we evaluate the performance and potential savings of our approach. We carry out the 
evaluation for a 𝑁𝑁vBS  =  5 vBS deployment. We used PyTorch9 to implement the DT and the Classifier. 

Training Evaluation  

1. Digital Twin (DT): We implemented the DT of one vBS using a NN with three hidden layers of sizes 
{256, 128, 64} respectively with a ReLU activation function. Moreover, we stop the training iterations 
using an early stopping mechanism to prevent overfitting. The early stopping mechanism stops the 
training after the value of the loss function in a validation data set has not improved during the last N 
training iterations. N is usually referred to as patience. Figure 3-10 shows the MSE loss value on the 
training and validation data sets of the DT as a function of the training iterations. We selected a patience 
of 𝑁𝑁 =  10 and trained the model during 70 iterations.  

2. NN Classifier: On the other hand, we implemented the Classifier as a NN with 4 hidden fully connected 
layers of sizes {512, 384, 384, 512} respectively. Each layer also used a ReLU activation function and we 
introduced a 0.2 dropout probability during training. We also use the early stopping mechanism with 
𝑁𝑁 =  50 of patience. Figure 3-11 shows the cross-entropy loss on the training and validation data set as 
a function of the number of training iterations. We train the model until iteration 300 (due to the early 
stopping mechanism). The training loss is higher than the validation loss due to the dropout layers. Also, 
the classifier achieves a 92.1% accuracy on our testing data set.  

 
Figure 3-10: vRAN resource allocation - Digital Twin MSE 

 
9 https://pytorch.org 

https://pytorch.org/
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Figure 3-11: vRAN resource allocation - NN Classifier Cross 

Performance Benchmark  

We design MemorAI to operate in the Non-Real Time RIC of the O-RAN architecture as an rApp. Based on 
this, we selected a time granularity of 15 minutes for our evaluation. We generated a data set with random 
context data and compared MemorAI against the following approaches:  

• Random: We select the allocation of cache ways for each vBS randomly;  

• Equal partition: All the vBSs get allocated the same number of cache ways. Extra cache ways are left 
unallocated;  

• Weighted: Each vBS gets allocated a number of cache ways as proportionally to its total demand as:  

𝑛𝑛𝑖𝑖LLC =
𝑑𝑑𝑖𝑖UL + 𝑑𝑑𝑖𝑖DL

∑ 𝑑𝑑𝑗𝑗UL + 𝑑𝑑𝑗𝑗DL
𝑗𝑗

⋅ 𝑁𝑁LLC 

Figure 3-12a shows the energy savings in kilojoules (kJ) of our solution and the optimal strategy with respect 
to the different benchmarks in a decision interval of 15 minutes. Our solution outperforms the three 
benchmarks in terms of energy while producing almost the same results as the optimal solution. Thus, 
MemorAI understands better the utility of LLC cache partitioning than benchmark strategies. Our solution 
yields higher savings up to 1 kJ compared to the random strategy, up to 0.35 kJ compared to the equal 
partitioning, and up to 0.36 kJ compared to the weighted strategy. Note that, although the weighted strategy 
shows a lower power consumption, it does not scale the LLC cache properly when there is an imbalance 
between UL and DL demands. In these cases, our approach achieves the highest gains with respect to this 
strategy. Finally, Figure 3-12b shows the attained gains when the system has only 8 cache ways available. In 
that case, the random approach performs better because the number of configurations is lower and 
therefore the probability of selecting the optimal configuration is higher. The savings compared to the equal 
partition approach are higher as the benchmark can only allocate one cache way per vBS in this scenario. 
Compared to the weighted strategy, we still observe higher savings.  

 

 
Figure 3-12: vRAN resource allocation - Energy savings compared to different benchmarks and different number of 

cache ways for a 15 min decision interval 
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 Conclusions 

Cache memory is a key resource for vRANs to reduce energy consumption. Non-isolated access to cache 
memory resources increases energy consumption, making less attractive the advantages of virtualization. In 
this final deliverable, we have studied how the different mechanisms for cache memory isolation decrease 
the energy consumption of a vRAN platform. Then, we proposed MemorAI which strategically allocates LLC 
resources to minimize energy consumption. MemorAI comprises a digital twin and a NN classifier, providing 
a very efficient and flexible solution. MemorAI achieves almost optimal performance and can attain 
significant energy savings when compared with other strategies. 

3.2 AI/ML and data-driven strategies for energy-efficient 5G carrier on/off 
switching 

In this section, we present an AI-driven QoS-aware energy-saving strategy to manage 5G carrier on/off 
switching. The objective is to enhance energy efficiency while ensuring a certain throughput level during 
switch-off periods. This work is aligned with BeGREEN D2.3 [19] (Section 4.8), where we evaluated existing 
switch-off opportunities in a real cellular deployment by using data from a commercial Mobile Network 
Operator (MNO). The approach involved offloading 5G cell traffic to the 4G cells of the same site and sector. 

Recall that the optimal strategy, i.e., an oracle-like approach with full dataset visibility, quantified potential 
switch-off opportunities across the 200 evaluated cells. However, the achievable energy savings decreased 
when specific QoS requirements were imposed. Specifically, the estimated Energy Savings dropped from 79% 
of total consumption (13.7 MWh) to 17% (2.9 MWh) when increasing the throughput constraint from 0 Mbps 
(no constraints) to 25 Mbps (high constraints). Figure 3-13 illustrates this trade-off, showing a heat map of 
energy-saving opportunities (left) and the energy savings vs. QoS trade-off (right). Achievable throughput 
levels were estimated according to the correlation between cell load and average UE throughput level found 
in the dataset, as analysed BeGREEN D2.3 [19]. The considered levels were selected according to typical 
throughputs required by video streaming applications, such as Netflix or YouTube.   

In BeGREEN D4.2 [2] we defined general energy-saving strategies, including both heuristics and ML-based, 
but those did not contemplate QoS aspects. To develop a QoS-aware strategy, as mentioned earlier in 
Section 2.3.1, we developed and evaluated Logistic Regression classifiers. To reduce the computational cost 
of analysis and optimization, the study was limited to a subset of 70 cells located in an urban scenario 
characterized by a high diversity of switch-off opportunities. Figure 3-14 illustrates the selected cell set and 
the distribution of switch-off times over the course of a full week. 

 

 
Figure 3-13: 5G Carrier on/off switching – Energy Savings opportunities (left), and Energy Savings/QoS trade-off 

(right). 
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Figure 3-14: 5G Carrier on/off switching – Reduced set of cells (left), and Energy Savings opportunities (right). 

 Classifier description 

To train the model, we generated a dataset containing information on switch-off opportunities and the QoS 
provided during switch-off periods. This was achieved by collecting results from the optimal strategy applied 
over two weeks of data across all cells in the deployment, with an additional week reserved for initial 
evaluation and hyperparameter tuning, and a fourth week for evaluation of the different policies. Recall that 
the oracle-like strategy based its QoS calculations on a regression method based on historical cell-level data. 
Our QoS estimation method was found to have a mean absolute error of 4.7 when evaluated over an unseen 
week of data across all dataset cells. Therefore, we decided to separate output columns in discrete intervals 
of 5 Mbps. 

The classifier takes as input the 5G load and the load of active 4G cells within the same site and sector. It 
outputs six binary decisions, each corresponding to a predefined throughput level: 0 Mbps, 5 Mbps, 10 Mbps, 
15 Mbps, 20 Mbps, and 25 Mbps. The logic follows the same approach used in BeGREEN D4.2 [2] for the 
simple classifier strategy but extends it to all considered throughput levels. Each output column indicates, 
for each time period, whether a given 5G cell can be switched off while still meeting the throughput 
requirements of the 4G cells used for offloading. When deploying the model, two types of erroneous 
decisions may occur: 

- Missed energy-saving opportunities: The model decides to keep the 5G cell ON, even though the 
traffic could have been offloaded and the throughput requirement met. 

- Outage decisions: The model decides to switch the 5G cell OFF, but the throughput requirement 
cannot be met, or the traffic cannot be offloaded at all (i.e., a 0 Mbps case). 

The missed opportunities decisions lead to wasted energy. However, note that for an operator those are not 
as critical as the outage decisions, which can make UEs to experience lower throughputs than the required 
ones or lead to cell saturation. This trade-off between missed energy-savings and outage decisions can be 
weighted during model training by tuning the “class weight” hyperparameter. It allows setting specific 
weights to each of the output classes, which are 0 (or OFF), and 1 (or ON), so that the model prioritizes the 
learning of one class over the other according to the weight’s ratio. 

We evaluate the effect of tuning the class weights on the recall and precision metrics obtained over the 
training set, which are directly linked with the outage and missed opportunities decisions. Those are defined 
as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇 ÷  (𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)     
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇 ÷  (𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)    

where TP, FN, and FP are True Positives, False Negatives, and False Positives, respectively 
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Figure 3-15: 5G Carrier on/off switching – Precision curve for the Logistic Regression multi-output classifier. 

 
Figure 3-16: 5G Carrier on/off switching – Recall curve for the Logistic Regression multi-output classifier. 

The outage decisions, or False Negatives, get reduced in the high recall domain. Conversely, the missed 
opportunity decisions, or False Positives, get reduced in the high precision domain. To get an intuition on 
how the class weights affect the model, and the trade-off between precision and recall, we evaluated our 
model for different class ratios.  

Figure 3-15 and Figure 3-16 show the obtained results. We observe that when the class ratio is below one, 
recall is increased while precision decreases; conversely, when the ratio is above one, precision improves at 
the expense of recall. To reduce outage decisions, it is preferable to use class ratios below one. However, 
very low ratios significantly reduce precision, leading to an increase in missed energy-saving opportunities. 
We also appreciate some differences between the output columns’ behaviour (i.e., QoS levels), which are 
related to the distribution of on/off decisions in each column Higher throughput levels present fewer 
opportunities for switching off, which leads to a faster increase in recall for those cases.  

The differences observed between output columns may motivate the use of individual hyperparameter 
tuning to optimize each column’s performance. Note that the multi-output classifier used is an ensemble of 
estimators, with each estimator trained to fit a specific output column, effectively functioning as six 
individual classifiers. However, hyperparameters are set globally, meaning all output columns share the same 
configuration and setting individual weights are not allowed. Conversely, compared to the training of six 
independent classifiers for each of the QoS levels, this approach offers significant advantages in terms of 
computational cost, training and retraining speed, energy consumption, and inference efficiency.  

To assess the impact of this trade-off, the next section compares results obtained with the multi-output 
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classifier against those from six independently trained classifiers, where individual hyperparameter tuning is 
possible. 

 Classifier evaluation 

In this section, we present the results obtained over the evaluation week, focusing on two main aspects: the 
effect of class weighting, and the comparison between multi-output and single-output classifiers (i.e., global 
versus individual class weight settings). Since our objective is to prioritize the reduction of outage decisions, 
we evaluate class weight ratios below 1, which maximize recall metric. Next figures illustrate the average 
number of outage decisions (Figure 3-17), missed opportunities (Figure 3-18), and total erroneous decisions 
(Figure 3-19) across cells as the class ratio decreases. The outage decisions and the missed opportunities 
figures are normalized to the total amount of ON and OFF decisions, respectively, while the erroneous 
decisions figure is normalized to the total amount of decisions taken by the classifier. 

Results in the figures reveal that, as the class ratio decreases, missed opportunities increase more rapidly 
than the reduction in outage decisions. This trend is confirmed in the total erroneous decisions plot, which 
consistently shows an increase with the class ratio. One of the key takeaways from this analysis is that 
reducing outage decisions inevitably leads to a disproportionately greater rise in missed energy saving 
opportunities, as can be inferred from the impact of lowering the class weights ratio on precision metric 
show in Figure 3-15.  Note that in the case of 20 and 25 Mbps, the total number of erroneous decisions, 
illustrated in Figure 3-19, tends to stabilize with the increase of the weights. However, this is caused by the 
very reduced number of OFF decisions being taken for these QoS levels, as was shown in Figure 3-18, which 
consequently leads to almost zero outage decisions, as depicted in Figure 3-17. 

 
Figure 3-17: 5G Carrier on/off switching – SLA Outage decisions according to the class ratio 

 
Figure 3-18: 5G Carrier on/off switching – Missed energy saving opportunities according to the class ratio 
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Figure 3-19: 5G Carrier on/off switching – Total erroneous decisions according to the class ratio 

 
Figure 3-20: 5G Carrier on/off switching – SLA Outage deviation according to the class ratio 

Figure 3-20 quantifies the impact of Service Level Agreement (SLA) outages on expected throughput. The 
metric is expressed as a percentage relative to each SLA level: for example, a 10% deviation in the 5 Mbps 
column corresponds to an outage of 0.5 Mbps or less, while the same percentage in the 25 Mbps column 
represents an outage of 2.5 Mbps or less. Once again, adopting a more conservative approach clearly 
improves this metric, especially in the case of high QoS levels, but at the cost of reducing switch-off 
opportunities. 

The observed trends, both in decreases and increases, vary between columns, with some exhibiting 
significantly larger errors or achieving more substantial reductions in outage decisions than others. This 
supports the hypothesis that individual hyperparameter tuning for each column may lead to improved 
overall performance. To investigate this, we compare the performance and energy saving results obtained 
using the multi-output classifier versus six independently trained single-output classifiers, under two 
different policy constraints: (i) Outage decisions must remain below 10% and (ii) outage deviation must 
remain below 15%. 

The key difference between both approaches lies on how the class weight ratio is determined. In the case of 
the multi-output classifier, a single global ratio must be selected and applied, which ensures that the policy 
constraint is met for every column. In contrast, when using six individual classifiers, each column can be 
trained with its own specific class ratio: i.e., the least restrictive one that still satisfies the policy based on the 
results obtained in prior evaluations. 

Following this approach, for the first policy constraint (outage decisions must remain below 10%), we train 
the multi-output classifier with a uniform class ratio of 1:4 across all columns.  
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Figure 3-21: 5G Carrier on/off switching – Performance of classifiers with selected class ratios (Outage decisions 

below 5%) 

 
Figure 3-22: 5G Carrier on/off switching – Performance of classifiers with selected class ratios (Outage deviation 

below 15%) 

In contrast, the individual classifiers are tuned with column-specific ratios of 1:3, 1:4, 1:4, 1:3, 1:2, and 1:1, 
respectively for each QoS limit. Figure 3-21 shows the results obtained for the first policy. The left figure 
illustrates the percentage of energy saved relative to the oracle-like strategy, the centre figure shows the 
total number of outage decisions, and the right figure the outage deviation. As previously discussed in the 
context of the recall/precision trade-off, lower class ratios have a more significant impact on high-throughput 
levels, as these offer fewer switch-off opportunities. Therefore, individual classifiers outperform multi-
output classifier in the amount of energy saved, since they are allowed to use less restrictive class ratios 
while still meeting policy constraints (as shown in the centre figure). In contrast, the multi-output model 
results in fewer outage decisions and deviations, as it requires a more conservative class ratio. However, the 
individual classifiers in some cases can reach outage deviations of around 20%, which may be problematic in 
certain scenarios. 

Consequently, the second policy considers the outage deviation, trying to decrease trying to decrease the 
difference between the obtained and the SLA throughputs. The multi-output class ratio is therefore set to 
1:8, while individual classifiers are configured to 1:2, 1:2, 1:8, 1:7, 1:6 and 1:3, respectively for each QoS limit. 
Since the 0 Mbps outage decisions translate into saturation of the 4G cells (i.e., no measurable outage 
deviation exists) in the case of individual classifiers we impose the same ratio as in the 5 Mbps column. Note 
that, compared to the previous case, this is a most restrictive policy for almost all QoS constraints (except 0 
and 5 Mbps cases) leading in the other cases to less energy savings and outage decisions. Also, the impact of 
the common class weight in the multi-output classifier is particularly severe for the highest QoS constraint, 
resulting in almost no energy savings. These results highlight the advantages of individually tuned classifiers. 

Once it was validated that tuning class weights in individual classifiers can outperform multi-output models, 
we extended the comparison to a different type of classifier. Specifically, we tested a widely known tree-
based model: the XGBoost Classifier. This model uses a tree-boosting algorithm that has proven effective in 
classification tasks, even when handling missing data.  
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Figure 3-23: 5G Carrier on/off switching – SLA Outage decisions and missed opportunities according to the class 

ratio (XGBoost) 

 
Figure 3-24: 5G Carrier on/off switching – Erroneous decisions and outage deviation according to the class ratio 

(XGBoost) 

We followed the same methodology as with the Logistic Regression classifier. First, we use a testing week to 
analyze the trade-off between outage decisions and missed opportunities. Then, under identical SLA policies 
or constraints, we determined the optimal class ratios for the evaluation week. 

Figure 3-23 and Figure 3-24 show the results obtained for the testing week. As illustrated, the XGBoost 
Classifier achieves better performance than Logistic Regression. It results in significantly fewer outage 
decisions, and missed opportunities increase more gradually. These outcomes suggest that the XGBoost 
Classifier is more suitable for the targeted use case. 

We next analyzed the results obtained under the same policies or SLA constraints considered in the previous 
section: an outage decision rate below 10% and an outage deviation below 15%. For the XGBoost Classifier, 
the corresponding class ratios for the first policy were: 1/2, 1/3, 1/2, 1/1, 1/1, 1/1. For the second policy, the 
ratios were: 1/3, 1/3, 1/1, 1/1, 1/3, 1/1. It is worth noting that, in general, XGBoost allows for more aggressive 
weight selection, which results in a lower number of missed opportunities. Figure 3-25 and Figure 3-26 
present a comparison between the individual classifier approach using Logistic Regression and XGBoost, with 
the respective computed class weights for both policies. 
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Figure 3-25: 5G Carrier on/off switching – Comparison between Logistic Regression and XGBoost Classifier on policy 

1 (outage decisions < 10%) 

 
Figure 3-26: 5G Carrier on/off switching – Comparison between Logistic Regression and XGBoost Classifier on policy 

2 (outage deviation < 15%) 

Except for the outage decisions at 0 Mbps and the outage deviation at 5 Mbps, the XGBoost Classifier 
outperforms the Logistic Regression model under the first policy, demonstrating significant improvements 
in both energy savings and reduced outage decisions. This effect is especially pronounced under high-
throughput SLA conditions, suggesting that XGBoost handles unbalanced class distributions more effectively.  

The performance gap is even wider under the second policy. The stricter constraints imposed by this policy 
force the Logistic Regression model to adopt much lower class ratios, while the XGBoost Classifier can 
consider more aggressive weighting. As a result, XGBoost achieves higher energy savings at high throughput 
levels, while maintaining outage deviations below the 15% threshold. However, Logistic Regression is more 
conservative in its outage decisions, mainly due to the lower class weights required to comply with the policy. 

 Conclusions 

Energy-efficient cell control through dynamic cell on/off switching is a key strategy for achieving energy 
savings in cellular networks and represents one of the primary energy-efficiency use cases within O-RAN. 
AI/ML plays a crucial role in this context, as accurate load and QoS predictions are essential to enable 
proactive and automated control loops that improve energy efficiency in the network without compromising 
traffic performance. Across the various deliverables of this Work Package and BeGREEN D2.3 [19], we have 
leveraged data from a real 5G NSA deployment provided by a MNO to characterize the trade-off between 
energy-saving opportunities and QoS impacts when switching off 5G cells and offloading their traffic to 4G 
cells in the same site and sector. 

First, we demonstrated that the strong correlation between cell load and energy consumption, combined 
with the regularity of day-night traffic cycles, makes this scenario well-suited for the application of predictive 
algorithms that decide on cell on/off switching based on 4G and 5G load patterns. However, due to the 
different characteristics of 5G and 4G cells, traffic offloading can sometimes result in QoS degradation. In 
this deliverable, we incorporate QoS constraints into the decision-making loop, and characterize the trade-
offs and performance of both single and multi-output classifiers in making on/off decisions. Results 
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demonstrate that individually tunning the weights of the models according to QoS constraints can improve 
decision-making and provide notable energy savings without compromising performance. Finally, we 
compared the performance of the Logistic Regressor with XGBoost. Findings highlighted that XGBoost is a 
more suitable option for our use case, enabling substantial energy savings even under more restrictive policy 
constraints than those considered so far. 

Future work will explore the application of these strategies to digital twins emulating realistic 5G networks. 
This include characterizing their performance according to real-time traffic and UE mobility, and establishing 
criteria for conflict mitigation, model retraining and parameter tunning. 

3.3 AI/ML-based algorithmic solutions for relay-enhanced RAN control 
BeGREEN D4.1 [1] and D4.2 [2] presented a description of different algorithmic solutions with the purpose 
to identify the presence of coverage holes (CH) in cellular networks and mitigate them by means of relays. 
On the one hand, a coverage hole detection methodology based on a clustering approach was proposed. On 
the other hand, an algorithm to identify candidate RUEs (i.e. UEs with relaying capabilities) was presented 
with the objective to assess the potentials of RUEs to mitigate coverage holes. Moreover, a fixed relay 
placement algorithm was also described. This relay placement algorithm aims to determine adequate 
locations to place fixed relays in order to address the presence of coverage holes. Finally, a relay 
activation/deactivation algorithm based on a Deep Q Network (DQN) was proposed with the aim to 
dynamically activate the relays to serve UEs located inside the coverage hole regions and deactivate them 
when they are not necessary, with the objective to reduce power consumption. An initial evaluation of the 
proposed algorithms was presented in D4.2 [2]. 

This section presents an extension of the initial results provided in BeGREEN D4.2 [2]. The proposed solutions 
have been evaluated in a realistic scenario using real measurements of the UE space/time distribution. 
Section 3.3.1 presents a description of the considered scenario. Additionally, a description of the gNB and 
relay power consumption model is also provided. Then, Section 3.3.2 presents the performance evaluation 
of the different solutions in terms of the UE perceived spectral efficiency and the power consumption. First, 
an initial analysis in which no relays are deployed is presented, and a characterization of the identified 
coverage holes is provided. Then, a comparison of a solution based on the use of RUEs to mitigate the 
coverage holes is compared with respect to the case of no relays and of deploying fixed relays. Finally, the 
power consumption of different relay-based solutions is provided. In particular, a solution based on 
deploying fixed relays that remain always active, a solution that deactivates fixed relays when they are not 
necessary, and a solution based on RUEs are evaluated and compared with respect to the benchmark case 
of no relays. 

 Considered scenario 

The proposed algorithms have been evaluated in a realistic scenario in a University Campus of the Universitat 
Politècnica de Catalunya (UPC). The considered region is a 325m x 125m area with 25 buildings of 3 floors, 
denoted as A1, A2, …, D6, as shown in Figure 3-27. 5G NR coverage on the Campus is provided by three 
outdoor gNBs of a public MNO. This scenario has been modelled by means of a system level simulator that 
considers the geographical locations of the different buildings and the propagation loss of the transmitted 
signal. The Urban Macro (UMa) propagation model described in [31] is considered for the link between the 
gNBs and the fixed relays, RUEs and UEs. For the link between the indoor fixed relays and UEs, the Indoor 
Hotspot (InH) propagation model from [31] is used. The propagation model in the link between the RUEs and 
UEs is taken from [32].  

The propagation models include outdoor-to-indoor losses and 2D spatially correlated shadowing.  
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Google. Imagery @2024 CNES/Airbus, Institut Cartogràfic de Catalunya, Maxar Technologies, Map data @2024, Spain. 

Figure 3-27: Relay-enhanced RAN control - Considered scenario. 

The space/time UE location characterization is based on real measurements of the time evolution of the 
number of users located in the different buildings obtained from dataset [33]. Specifically, the dataset 
contains real measurements of the number of users connected in the area of each Wi-Fi APs at the university 
campus facilities obtained for multiple hours of different days. Thus, it reflects a realistic space/time UE 
location distribution that is taken as input for the 5G system level simulator assuming the UEs are connected 
to the gNBs. The considered algorithms have been evaluated using a collection of D=21 days of 
measurements. The clustering process executed in the Coverage hole detection algorithm has been done in 
N=24 time periods of T=1 hour, for all the days. The rest of parameters of the proposed algorithmic solutions 
are also presented in Table 3-1. Concerning the candidate RUE identification process, the algorithm searches 
for candidate RUEs that are located in the same building and floor in which the coverage hole is detected, 
excluding the coverage hole area. The same search area is considered for the fixed relay placement process. 

Table 3-1: Relay-Enhanced RAN Control - Considered Simulation Parameters 
Simulation parameters Value 
D 21 days 
N 24 periods 
Τ 3600 s 
gNB carrier frequency 3.7GHz 
Number of Resource Blocks at the gNB (MNB) 273 
Number of Resource Blocks at the relay (MR) 51 
gNB channel bandwidth (BNB,tot=MNB·BRB,NB) 100MHz 
gNB max. transmitted power (PNB,max=PRB,NB·MNB) 43dBm 
gNB transmitted antenna gain  12dB 
Path loss model gNB UMa [31] 
Relay/RUE carrier frequency 3.5GHz 
Relay/RUE channel bandwidth (BR,tot=MR·BR) 100MHz 
Relay/RUE max. transmit power (PR,max=PRB,R·MR) 5dBm 
Relay/RUE antenna gain 3dB 
Path loss model fixed relay InH [31] 
Path loss model RUE [32] 
UE antenna gain 3dB 
Noise power spectral density -174dBm/Hz 
Noise Figure  9dB 
Efficiency factors (εNB, εR) 0.59  
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To characterize the coverage improvements achieved with the different solutions, the spectral efficiency 
observed by the UEs in the downlink direction is considered. The spectral efficiency SD when a UE is directly 
connected to the gNB with the highest SINR is computed by using the Shannon formula as: 

𝑆𝑆𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑙𝑙𝑙𝑙𝑙𝑙2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁−𝑈𝑈𝑈𝑈)] (3-1) 

where SINRNB-UE is the SINR in the link between the gNB and the UE, and Smax is the spectral efficiency 
corresponding to the maximum MCS of 5G NR from [34]. In turn, when the UE is connected to the gNB via a 
relay, the spectral efficiency is limited by the link with the worst conditions between both the gNB-relay and 
relay-UE links and it is expressed as: 

𝑆𝑆𝑅𝑅 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑙𝑙𝑙𝑙𝑙𝑙2�1 + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑈𝑈𝑈𝑈��� (3-2) 

where SINRNB-relay and SINRrelay-UE denote the SINR in the link between the gNB and the relay and the link 
between the relay and the UE, respectively. It is assumed that the UEs select their connectivity (i.e. directly 
to the best serving gNB or through a relay) that maximises their spectral efficiency.    
 
For the evaluation of the power consumption at the gNBs and the relays, the model proposed in [35] is 
considered, which assumes that the relation between the gBN transmitted power (PT,NB) and the gNB power 
consumption (PC,NB) of a specific gNB is nearly linear. Then, the gNB power consumption can be determined 
as: 

𝑃𝑃𝐶𝐶 ,𝑁𝑁𝑁𝑁 = 𝑃𝑃0,𝑁𝑁𝑁𝑁 + 𝑎𝑎𝑁𝑁𝑁𝑁 · 𝑃𝑃𝑇𝑇,𝑁𝑁𝑁𝑁 (3-3) 

 
  
where P0,NB represents the gNB power consumption at zero RF output power associated to circuits, signal 
processing, etc., and aNB corresponds to the linear dependency between the total gNB power consumption 
PC,NB and the transmitted power PT,NB. Similarly, the total power consumption at the R relays associated to a 
specific gNB is:  

𝑃𝑃𝐶𝐶 ,𝑁𝑁𝑁𝑁 = 𝑃𝑃0,𝑁𝑁𝑁𝑁 + 𝑎𝑎𝑁𝑁𝑁𝑁 · 𝑃𝑃𝑇𝑇,𝑁𝑁𝑁𝑁 (3-4) 

Where P0,R and aR are the power consumption model parameters for the relays and PT,r is the transmitted 
power at the r-th relay. 
The details of how the transmitted powers PT,NB and PT,r are calculated are described in Appendix 1. Finally, 
the total power consumption in a specific gNBs and its associated R relays is: 

𝑃𝑃𝐶𝐶,𝑅𝑅 = ��𝑃𝑃0,𝑅𝑅 + 𝑎𝑎𝑅𝑅 · 𝑃𝑃𝑇𝑇,𝑟𝑟�
𝑅𝑅

𝑟𝑟=1

 (3-5) 

Different values of the power consumption model parameters are considered based on [36][37][38]. Table 
3-2 shows the considered combinations of parameters. 

Table 3-2: Relay-enhanced RAN control - Power consumption model parameters. 
Combination aNB P0,NB(W) aR P0,R(W) 

C1 
28.4 156.38 

20.4 13.91 
C2 4 6.8 
C3 

4.7 130 
20.4 13.91 

C4 4 6.8 
C5 

2.8 84 
20.4 13.91 

C6 4 6.8 
C7 

2.57 12.85 
20.4 13.91 

C8 4 6.8 
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The total power consumption is calculated for different CH mitigation solutions described below: 

• Benchmark, No Relays (BNR): In this case, no relays are deployed in the scenario, and then, all UEs 
connect directly to the best serving gNB. 

• Deployment of Fixed Relays Always On (FRAO): In this solution, it is assumed that the fixed relay 
placement algorithm described in D4.2 [2] has been executed and a fixed relay has been deployed 
to address each identified CH. In this solution, the fixed relays remain always switched on, even in 
situations in which they are not serving UEs.  

• Deployment of Fixed Relays On/Off (FROO): In this solution, the deployment of fixed relays is 
assumed, and each of the fixed relays is switched off when there are no UEs to be served.   

• Deployment of Fixed Relays and RUEs (FRR): In this solution, it is assumed that the candidate RUE 
identification process described in D4.2 is active, and some CHs are addressed by means of RUEs. In 
case of low availability of RUEs for some specific CHs, fixed relays are deployed according to the 
proposed fixed relay placement algorithm. As in the FROO solution, fixed relays are switched off 
when there are no UEs to be served. 

For the solutions FRAO, FROO and FRR the Power Saving (PS) with respect to the BNR is determined as the 
relative difference in percentage between the power consumption of the solution and that of the BNR. It is 
worth mentioning that a positive power saving (i.e. PS>0) means that the considered solution consumes less 
power than the BNR benchmark case of no relays, while a negative value (i.e. PS<0) indicates that the case 
of no relays provides less power consumption. 

 Performance evaluation 

This section evaluates the performance of the proposed solutions in the considered scenario. First, an initial 
analysis in which no relays are deployed is presented in section 3.3.2.1, including the obtained 
characterization of the detected coverage holes. Then, section 3.3.2.2 presents the results of the candidate 
RUE identification process, while section 3.3.2.3 evaluates the performance results obtained with RUEs for  
different RUE activation policies. Section 3.3.2.4 presents a comparison of the performance for the case 
when no relays are considered, the case of deploying the fixed relays and a solution based on RUEs. Finally, 
Section 3.3.2.5 compares the FRAO, FROO and FRR solutions in terms of power saving with respect to BNR.  

 Benchmark – no relays 

With the aim of illustrating the overall performance in the network without relays, Figure 3-28 shows the 
Cumulative Distribution Function (CDF) of the spectral efficiency observed by the UEs when they are 

directly connected to the best serving gNB. The average spectral efficiency in the whole scenario is around 
3.4bits/s/Hz. According to Figure 3-28, in 21% of the measurements reported by the UEs, the maximum 
spectral efficiency of Smax=7.4bits/s/Hz is obtained, which corresponds to geographical regions with very 

good propagation conditions. In turn, from Figure 3-28 it can also be observed that there is around 10% of 
UE collected measurements with a spectral efficiency lower than 0.5bit/s/Hz that correspond to 

measurements collected at specific indoor regions with a very low received signal level in certain times.
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Figure 3-28: Relay-enhanced RAN control - CDF of the spectral efficiency in the indoor locations. 

An analysis of the propagation conditions and the spatio-temporal user distribution has been conducted to 
illustrate the problematic being addressed. Figure 3-29 presents a map with the spectral efficiency in 
bits/s/Hz obtained at the ground floor of the different buildings. This spectral efficiency is calculated 
according to (3-1) with the parameters described in Table 3-1 and using the UMa propagation model in [31]. 
Additionally, Figure 3-30 and Figure 3-31 plot a map of the spatial density, in UEs per square meter, in the 
ground floor of the different buildings in two different days. This is calculated as the average normalized time 
in which a UE is located at each geographical location.  

The results indicate that the user distribution is non-uniform across the campus. Certain buildings exhibit 
higher user density than others, and even within the same building, varying user concentrations are observed 
on different days. As an example, Building A3 (see building names in Figure 3-27) displays different user 
concentrations in the two days represented in Figure 3-30 and Figure 3-31, while Building B6 consistently 
exhibits elevated and sustained user density in both days. When considering the user density in these 
buildings jointly with the spectral efficiency map of the campus, it is observed that the propagation 
conditions in Building A3 allow users to experience good levels of spectral efficiency (see Figure 3-29). In 
contrast, users in building B6 are likely to experience significantly lower spectral efficiency values in an area 
with sustained high traffic levels, which could result in the presence of a CH. 

 
Figure 3-29: Relay-enhanced RAN control - Map of the spectral efficiency (bits/s/Hz). 
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Figure 3-30: Relay-enhanced RAN control - Map of the user spatial density (UE/m2) in day 4. 

 
Figure 3-31: Relay-enhanced RAN control - Map of the user spatial density (UE/m2) in day 14. 

Table 3-3 provides the list of the CHs identified with a repetitiveness higher than 10%. The CH repetitiveness 
was defined in D4.2 as the percentage of time in which the user density in the CH is higher than a specific 
threshold. A high CH repetitiveness indicates that a relatively large number of UEs are located inside the CH 
region in a large percentage of time. The CH characterization presented in Table 3-3 includes the centroid 
geographical coordinates, the building and the floor where each coverage hole is detected (ground floor is 
represented with 0), the coverage hole radius and its repetitiveness. Moreover, Figure 3-32 illustrates the 
geographical locations of the CHs. Note that the identified CHs correspond to geographical regions with poor 
spectral efficiency (see Figure 3-29) with sustained traffic levels in a relatively large number of time periods 
(e.g. CH_4 in B6 building). It is worth noting a very large repetitiveness in coverage holes CH_2 and CH_3 
with a relatively high traffic level in more than 30% of the total observed time (which includes time periods 
at nights and in weekends). 

Table 3-3: Relay-enhanced RAN control - Validated Coverage Holes 

 Centroid 
Coordinates Building (Floor) Radius 

(meters) 
Repetitiveness 

(%) 
CH_1 [60,44] C1 (floor 1) 8.6 22.91 
CH_2 [77,41] C1 (floor 0) 8 43.75 
CH_3 [67,75] B1 (floor 1) 5.5 32.29 
CH_4 [318,75] B6 (floor 0) 9.11 12.50 
CH_5 [72,74] B1 (floor 0) 7.13 15.62 
CH_6 [178,42] C3 (floor 0) 8.26 14.58 
CH_7 [85,105] A1 (floor 0) 5.4 11.45 
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Google. Imagery @2024 CNES/Airbus, Institut Cartogràfic de Catalunya, Maxar Technologies, Map data @2024, Spain. 

Figure 3-32: Relay-enhanced RAN control - Identified CHs and fixed relay locations to address them. 

 Candidate RUE identification 
This section explores the availability of UEs to serve as RUE to mitigate the identified CHs. For this purpose, 
the candidate RUE identification process described in BeGREEN D4.2 has been executed in the considered 
scenario.  

Table 3-4 shows the percentage of time with at least one available UE to serve as a RUE for each CH. A UE is 
considered to be available to become RUE if the RSRP from the best serving gNB is higher than ThRSRP=-90dBm. 
Table 3-4 also shows the average number of simultaneous UEs available to serve as RUE. These two metrics 
are also presented considering only the time periods when each coverage hole is detected. As shown, in 
CH_2 and CH_5, there is a high percentage of time with at least one available UE to serve as RUE. A relatively 
large number of UEs available to become RUE is also observed in these CHs. This indicates that it may be 
feasible to rely on RUEs to address CH_2 and CH_5. In turn, note that the RUE availability in CH_4 and CH_6 
is very low, which suggests the necessity of the deployment of fixed relays for these CHs. 

Table 3-4: Relay-enhanced RAN control - Statistics of UE availability to serve as RUE 
 Percentage of time with at least 

one available UE to serve as RUE. 
Average number of simultaneous 

available UEs to serve as RUE 
  All time periods Only CH periods All time periods Only CH periods 

CH_1 69.42 74.76 3.05 3.50 
CH_2 85.26 85.74 4.20 4.25 
CH_3 50.64 54.94 2.72 2.85 
CH_4 23.95 45.83 1.74 1.79 
CH_5 84.42 96.01 3.48 4.59 
CH_6 11.80 22.98 1.31 1.44 
CH_7 31.79 56.38 9.18 10.40 

 Impact of the different RUE activation policies 
This section presents the UE performance when considering the different RUE activation policies. The RUE 
activation process is in charge of deciding dynamically which of the candidate RUEs are activated. For this 
purpose, the RUE activation process checks the availability of the different candidate RUEs to address the 
different CHs. Only candidate RUEs with an average RSRP from the serving gNB higher than a threshold 
ThRSRP=-90dBm are considered to be available to serve as RUE. Other conditions may also be included to 
check the candidate RUE availability (e.g. battery level higher than a threshold, etc.). Then, the RUE activation 
process determines the RUE(s) that are activated to address each CH. Different policies can be considered:   

1. Activation of the RUE with the best spectral efficiency. This policy activates the available candidate 
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RUE with the highest spectral efficiency from the best serving gNB. This policy aims to maximise the 
capacity of the gNB-RUE link. 

2. Activation of the RUE with the highest presence: This policy activates the available candidate RUE 
that spends more time in the area, with the aim to minimise the number of RUE changes and, as a 
consequence, reduce the signalling associated to the RUE activation/deactivation. For this purpose, 
an active candidate RUE remains active until it becomes unavailable (e.g. until the UE moves to a 
different region or the UE ends its connection). In case that the active candidate RUE becomes 
unavailable, then the policy searches a new available candidate RUE to be activated. This is done by 
sorting the available candidate RUEs in a ranking according to their presence, i.e. the percentage of 
time in which a specific UE is present in the specified square area, defined in BeGREEN D4.2. Then, 
the RUE with the highest presence is activated.  

3. Activation of all the candidate RUEs that are simultaneously available. In this case, all the available 
candidate RUEs are activated. This policy may improve the coverage/capacity at the CHs at expense 
of a higher power consumption. However, this solution would require the implementation of 
mechanisms to manage the possible interference among active RUEs (e.g. by coordinating the RUEs 
transmissions in the time domain or by using different frequency bands for each RUE). 

In particular, Figure 3-33 shows the percentage of time with spectral efficiency observed by the UEs below 
0.5bits/s/Hz. This metric is calculated for all the UEs located in the same building and floor of each identified 
CH. As shown in Figure 3-33, activating all the candidate RUEs that are available simultaneously does not 
lead to a clear improvement with respect to the activation of just one candidate RUE. The rationale is that 
the obtained coverage hole regions are relatively small when compared to the coverage area provided by a 
RUE. Then, the activation of just one RUE becomes enough to address the coverage hole without the need 
of activating additional RUEs at the same time.  

Moreover, for the policies that activate just one RUE,  

Table 3-5 shows the average spectral efficiency in the gNB-RUE link and the average number of different 
activated RUEs during the day for both policies. The policy that activates the RUE with the best spectral 
efficiency provides a slightly better spectral efficiency perceived by the UEs (see Figure 3-33). The rationale 
is that this policy allows a better spectral efficiency in the link between the gNB and the RUE (see  

Table 3-5). However, an increase in the number of different active RUEs per day is observed (see  

Table 3-5), which may lead to an increase in the signalling related to the RUE activation/deactivation 
processes.  
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Figure 3-33: Relay-enhanced RAN control - Percentage of time with spectral efficiency observed by the UEs below 

0.5bits/s/Hz in the different CHs regions. 

 

Table 3-5: Relay-enhanced RAN control - Comparison of the RUE activation policy. 

 
Activation of the RUE with the highest spectral 

efficiency 
Activation of the RUE with the highest presence 

 
Avg. spectral efficiency 

observed by the RUE 
Avg. number 

of different RUEs per day 
Avg. spectral efficiency 

observed by the RUE 
Avg. number of 

different RUEs per day 
CH_1 1.96 5.95 0.96 1.80 
CH_2 2.30 9.09 1.97 1.09 
CH_3 1.71 6.33 1.60 3.19 
CH_4 0.82 5.14 0.66 3.09 
CH_5 1.67 9.09 0.80 0.38 
CH_6 0.97 0.85 0.57 0.85 
CH_7 3.26 11.66 2.28 5.71 

 Performance comparison of the different solutions 
To gain insight into the potential capabilities of relays/RUEs to mitigate the CHs, this section presents a 
comparison of different spectral efficiency statistics observed by the UEs in the different CHs, for the 
benchmark case when no relays are considered, the case of deploying fixed relays and the case of using RUEs. 
For the case of RUEs, the RUE activation policy is the one that activates the available candidate RUE with the 
best spectral efficiency in the gNB-RUE link. Regarding the use of fixed relays, the relay placement algorithm 
described in BeGREEN D4.2 has been executed in order to identify the best location to place a fixed relay to 
address each CH. The obtained fixed relays locations are presented in Figure 3-32.  

Focusing first on coverage hole CH_2, Figure 3-34 shows the CDF of the UE spectral efficiency observed in 
the geographical locations in the same building and floor where CH_2 is located (i.e. ground floor at Building 
C1). As shown, when no relay is deployed, the spectral efficiency is below 0.5bit/s/Hz in 40% of the UE 
reported measurements. The deployment of a fixed relay R_2 to address CH_2 (see Figure 3-32) clearly 
improves the spectral efficiency in this region (i.e. the percentage of UE measurements with spectral 
efficiency below 0.5bit/s/Hz is around 1.6%, as shown Figure 3-34). It is also worth noting that, for the case 
of deploying the fixed relay R_2, in 40% of the measurements, the spectral efficiency observed by the UEs is 
limited by the spectral efficiency in the link between the gNB and the fixed relay, and corresponds to 5.8 
bits/s/Hz, as shown in Figure 3-34. In the case of using RUEs to address CH_2, the obtained CDF of the spectral 
efficiency observed by the UEs is also presented in Figure 3-34. The performance with RUEs basically depends 
on the availability of UEs to serve as RUE (note a high UE availability in CH_2, around 85%, as shown in Table 
3-4) and the spectral efficiency in the links gNB-RUE and RUE-UE.  
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Figure 3-34: Relay-enhanced RAN control - CDF of the spectral efficiency (bits/s/Hz) observed by the UEs in the 

region of CH_2 (i.e. ground floor of Building C1). 

 
Figure 3-35: Relay-enhanced RAN control - Average UE spectral efficiency observed by the UEs. 

 
Figure 3-36: Relay-enhanced RAN control - Percentage of UE measurements with spectral efficiency below 

0.5bit/s/Hz in the region of each CH.  

The previous results have been extended for the different CHs regions. Figure 3-35 presents the average UE 
spectral efficiency and Figure 3-36 shows the percentage of UE measurements with a spectral efficiency 
lower than 0.5bit/s/Hz. As shown in Figure 3-35 and Figure 3-36, the deployment of fixed relays at the 
locations shown in Figure 3-32 clearly provides the best spectral efficiency statistics. 

In some coverage holes such as CH_2 and CH_5, the use of RUEs leads to significant improvements with 
respect to the case of no relays (see Figure 3-35 and Figure 3-36) because of a relatively high presence of 
available UEs to serve as RUE (see Table 3-4) and a relatively good spectral efficiency in the links gNB-RUE 
and RUE-UE. The obtained performance with RUEs in CH_2 and CH_5 is not so good as in the case of fixed 
relays but the use of RUEs is a cost-effective solution in terms of CAPEX. It is also worth mentioning that the 
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performance of RUEs in CH_4 and CH_6 is very similar to the case of no relays (see Figure 3-35 and Figure 
3-36) because of the low availability of UEs to serve as RUEs in these regions (see Table 3-4). 

Considering a performance requirement of providing a spectral efficiency higher than ThSpeff=0.5bits/s/Hz in 
P=90% of the time, it can be observed from Figure 3-36 that the use of RUEs can satisfy this requirement in 
CH_1, CH_2 and CH_5. However, the deployment of fixed relays becomes necessary in CH_3, CH_4, CH_6 
and CH_7 to satisfy this performance requirement. Then, the solution that combines the deployment of fixed 
relays and the use of RUEs (i.e. the FRR solution described in section 3.3.2), considers the mitigation of CH_1, 
CH_2 and CH_5 by means of RUEs and the deployment of fixed relays to address CH_3, CH_4, CH_6 and CH_7. 

 Power Consumption evaluation 

This section aims to provide a comparison of the different CH mitigation solutions by means of relays in terms 
of power consumption. As shown in the previous section, better values of spectral efficiency can be obtained 
when using relays/RUEs, because of the more favourable propagation conditions in the involved links. This 
will have a relevant impact in the number of required RBs to satisfy the UE bit rate demands and, as a 
consequence, in the power consumption, because the transmitted power is proportional to the number of 
occupied RBs, see equations (A1-7) and (A1-9) in Appendix 1.  

To illustrate this, first, Figure 3-37 presents the CDF of the percentage of RBs used in gNB2 for the different 
solutions, namely the benchmark case when no relays are considered (BNR), the solution based on fixed 
relays and RUEs (FRR) and the solutions based on deploying fixed relays (FRAO that keeps the fixed relays 
always on and FROO that switches off the fixed relays with no UEs to serve). These solutions consider the 
same fixed relays and/or RUEs of previous sub-section. The considered UEs required bit rate is rb=4Mbits/s. 
As shown in Figure 3-38, the use of fixed relays (note that both FRAO and FROO give the same result) clearly 
reduces the amount of RBs used in gNB2 with respect to the case of no relays. The FRR solution provides a 
result close to the case of fixed relays. Although not presented here, it has been observed that the RBs 
occupancy in gNB1 and gNB3 is much lower than in gNB2, because gNB2 is the one that serves most of the 
users in the considered scenario. 

 
Figure 3-37 Relay-enhanced RAN control - CDF of the power saving with respect to the benchmark BNR. 

 
Figure 3-38 Figure 3 38: Relay-enhanced RAN control - RB occupancy at gNB2. 
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Figure 3-39: Relay-enhanced RAN control - Average value of Power saving (%) of the different solutions for different 

UE required bit rate. 

Figure 3-38 presents the CDF of the power savings obtained with the different proposed solutions with 
respect to the BNR. The considered power consumption model parameters in Figure 3-38 correspond to 
combination C2 in Table 3-1. As shown, the FROO solution always provides a positive value of power saving 
with respect to the benchmark BNR. Although not shown in the Figure, it is worth mentioning that the power 
consumption in the benchmark case (BNR) can be up to 850W. The FROO solution can reduce this power 
consumption to 400W, which represents a power saving of 450W that corresponds to a reduction of 53% 
(see percentile 99 in Figure 3-38). The FRR solution based on fixed relays and RUEs provides power savings 
close to FROO.  

In the case of FRAO, there is a 45% of the time in which the power saving is negative (i.e. the power 
consumption with FRAO is higher than BNR). This corresponds to the percentage of time in which there are 
no UEs served by the fixed relays. In these periods in the FRAO solution, the 7 fixed relays remain switched 
on (each of them consuming a power P0,R=6.8W) leading to a power consumption 47.6W higher than BNR. 
As shown in Figure 3-38, the power saving with FRAO can be up to -30% with respect to BNR. Switching off 
the fixed relays with no UEs to be served (i.e. FROO solution) clearly provides benefits in terms of power 
savings. Focusing on average terms, the average power saving with the deployment of relays with respect to 
BNR ranges between a 14% for the case FRAO and a 25% for the case FROO. 

Figure 3-39, illustrates the average percentage of power savings of the different solutions with respect to 
the benchmark BNR, for different UE required bit rates. As shown, for low values of the bit rate, the power 
savings are relatively low. Even negative values are obtained for the case of FRAO. The reason is that the 
power savings (obtained due to the better propagation conditions when deploying fixed relays with respect 
to BNR case) are lower than the power consumption of the relays. In turn, when the bit rate increases, the 
average power savings obtained with relays also increase, reaching values of 35-40% for rb=16Mbits/s. The 
power saving of the FRR solution is very close to the case of FROO for low values of the bit rate. However, 
when increasing the bit rate, the lower spectral efficiencies provided by the RUEs increase the required 
transmitted power and the power consumption with respect to FROO, which results in lower power savings 
of FRR. In any case, it is worth noting relevant power savings of FRR with respect to BNR, especially when 
UEs demand higher bit rates.  

Figure 3-40 illustrates the impact of the different combinations of the power consumption model parameters 
considered in Table 3-2. For this purpose, the average value of the power savings of the different relay-based 
solutions with respect to the BNR case of no relays have been determined for the different parameter 
combinations. The impact of different values of the UE required bit rate is also presented in Figure 3-40a. As 
shown in Figure 3-40a, the FROO solution provides positive values of power saving with respect to BNR in 
almost all the combinations of power consumption parameters. Higher power savings are obtained for 
higher values of the UEs required bit rate. In particular, as shown in Figure 3-40a, if rb=16Mbits/s, the average 
power saving of FROO ranges between 15% for combination C5 and 40% for combination C2.  
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(a)                                            (b)                     (c) 

Figure 3-40: Relay-enhanced RAN control - Impact of the power consumption model parameters in the obtained 
power saving (%) with respect to the case of no relays. 

The FRR solution (see Figure 3-40b) also provides promising results in terms of power savings (close to the 
FROO solution), and avoids the necessity of deploying fixed relays in some specific regions (namely CH_1, 
CH_2 and CH_5) with available UEs to serve as RUE. Finally, note also from Figure 3-40c, that the FRAO 
solution only provides positive power savings in combinations C1 and C2 with bit rates higher than 8Mbits/s, 
while negative power savings are observed in most of the combinations. This indicates the relevance of 
switching off the fixed relays when they are not necessary.  

 Conclusions 

Previous sections have presented an evaluation of the different relay control functionalities described in 
BeGREEN D4.1 and D4.2, namely, the coverage hole detection, the candidate RUE identification, the fixed 
relay placement and the relay activation/deactivation functionalities. This evaluation has been done in terms 
of the UE spectral efficiency and also in terms of power consumption. The proposed algorithms have been 
executed in a realistic scenario that is fed with a real space/time UE geographical location distribution. 

For the different identified CH regions, the UE performance achieved with a solution based on RUEs has been 
compared to the case of no relays and the case of deploying fixed relays. According to the obtained results, 
the solution based on fixed relays provides a clear improvement in terms of UE performance with respect to 
the case of no relays. The performance obtained with RUEs is subject to the availability of UEs to serve as 
RUE, and the spectral efficiency in the gNB-RUE and RUE-UE links. In some of the identified CHs, the RUE 
availability is rather low and, as a consequence, the performance of the RUE based solution is very close to 
the case having no relay. In such situations, the deployment of a fixed relay would be required. In contrast, 
in other CHs with higher candidate RUE availability and acceptable spectral efficiency in the gNB-RUE and 
RUE-UE links, the use of RUEs may allow a performance close to the case of fixed relays in a most cost-
efficient way. According to this, a FRR solution that combines the use of RUEs, to address CHs with high RUE 
availability, and the deployment of fixed relays to mitigate the rest of the CHs has been proposed. In the 
considered scenario, this FRR solution guarantees a spectral efficiency higher than 0.5bits/s/Hz in more than 
90% of the time for all the CHs regions, and reduces the number of fixed relays to be deployed, which leads 
to a CAPEX reduction. 

From the point of view of power consumption, different relay-based solutions have been evaluated. It is 
found that the deployment of fixed relays that are switched off when no UEs are to be served (FROO solution) 
provides positive power savings with respect to BNR in almost all the considered situations. The power 
savings depend on the required bit rate and on the parameters of the power consumption model. In 
particular, for rb=16Mbits/s, the average power saving with respect to BNR ranges between 15% and 40%, 
for combinations C5 and C2, respectively. In turn, when the fixed relays are always on (FRAO solution) the 
power savings are considerably worse, which indicates the importance of switching off the fixed relays when 
they are not necessary. Finally, the FRR solution that combines the use of both fixed relays and RUEs shows 
promising results in terms of power savings, close to the FROO solution. 
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3.4 Traffic-aware compute resource management to enhance UPF EE 
Virtualization and softwarization of 5G network functions have accelerated the use of general-purpose 
hardware and commercial off-the-shelf (COTS) equipment for deploying 5G RAN and Core networks. 
However, this flexibility often compromises EE, particularly for traffic-intensive components like the UPF. 
While the Data Plane Development Kit (DPDK) offers substantial improvements in packet processing 
performance within UPFs, it also leads to higher energy consumption due to the heavy reliance on CPU 
resources. 

As was presented in BeGREEN D4.2 [2], in BeGREEN we have addressed these challenges by proposing 
practical strategies to dynamically allocate CPU resources in DPDK-based UPFs according to traffic demands. 
In this section, we first complete the experimental characterization started in D4.2 regarding the trade-offs 
between energy consumption and performance under varying workloads, including the impact of uncore 
frequency scaling, which manages components such as the Last Level Cache (LLC) and Integrated Memory 
Controllers (IMC). These analysis leads to the proposal of different load-aware CPU allocation policies, which 
are applied to a scenario using real traffic statistics from a Spanish Mobile Network Operator. We then 
discuss the application of AI/ML-based traffic prediction to drive the application of these policies, providing 
a comparative analysis of different models and heuristics.  

 Experimental characterization 

In BeGREEN D4.2 [2] we presented the main features and components of the evaluated DPDK-based UPF. 
The OAI UPF-VPP10 is an open-source implementation of the 5G Core UPF (Release 15 & 16) based on both 
Vector Packet Processor (VPP) v21.01 [39] and DPDK v20.11. For clarification purposes, let us summarize 
below the relevant concepts and procedures impacting its performance.  Figure 3-41 illustrates its high-level 
architecture:  

• The UPF-VPP runs on top of kernel bypass technologies such as DPDK, which uses a Poll Mode Driver 
(PMD) that employs busy-polling to access NIC descriptors without interruptions (1 and 5 in Figure 
3-41). VPP handle packets in batches, enabling accelerated packet processing in the user space (2 
and 6). The vector processing nodes perform the N3/N6 GTP decapsulation/encapsulation and the 
forwarding to the N6/N3 interfaces (3 and 7). The output node will finally forward packets to the 
required NIC interface (4 and 8). 

• VPP handlers packet processing and NIC polling through worker threads. Additional threads are used 
to scale packet processing capabilities, enabling VPP to handle higher traffic loads and match the 
speed of the available NICs without incurring in traffic losses. 

• PMD utilization leads to full CPU usage regardless of the network load, resulting in high energy 
consumption and lower energy efficiency during off-peak periods. Initial results for the performance 
and energy consumption of the UPF-VPP under default CPU governors are shown in Figure 3-42. The 
powersave governor algorithm reduces CPU frequencies to the minimum configured value (1 GHz in 
this case), decreasing energy consumption but penalizing performance (maximum of 23.6 Gbps) due 
to worker capacity saturation. On the contrary, the performance governor scales CPU frequencies 
up to the maximum configured value (2.7 GHz in this case), maximizing performance (up to 35 Gbps) 
but significantly increasing energy consumption, even during idle phases without traffic. As shown 
in Figure 3-42b, energy consumption is also heavily influenced by CPU frequency when scaling up 
the number of threads. 

 
10 https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp 

https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-upf-vpp
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Figure 3-41: UPF-VPP - DPDK-based UPF-VPP architecture 

 
Figure 3-42: UPF-VPP - Energy consumption of the UPF-VPP with default CPU governors: (a) Single CPU in idle 

(without traffic) and saturation status (input traffic of ~35 Gbps), (b) Multiple CPUs in idle status 

 
Figure 3-43: UPF-VPP - CPU resource allocation schema 

The results highlight the need for energy-efficient CPU resource management according to traffic load. Three 
main strategies are considered, as illustrated in Figure 3-43:   

• CPU frequency scaling: Although it is not possible to modify DPDK's PMD behaviour, which 
exhaustively uses CPU resources, P-states policies in the operating system can be applied to 
dynamically adjust CPU frequencies according to the incoming load on the NICs. 

• Uncore frequency scaling: The built-in algorithm responsible for scaling the uncore frequency of 
Intel processors mainly considers the workload and the frequency of active cores [40][41]. However, 
increasing the uncore frequency does not always benefit packet processing on the UPF and may 
instead result in an energy consumption penalty. Adjusting the uncore frequency in the operating 
system to align with UPF requirements can help mitigate this issue. 

• NIC-Worker allocation: The processing capacity of the DPDK-enabled NICs can be dynamically 
adjusted by allocating NIC's RX queues to workers, which directly impacts the utilization of worker-
CPU resources. A NIC with increasing traffic demand can rely on multiple RX queues to use additional 
workers and CPUs. Using low-frequency cores in such scenarios could further optimize energy usage 
compared to relying on a single high-frequency core. Conversely, if a worker or core is not needed 
during a specific period, it can be reallocated to other NICs in the UPF or temporarily disabled. 
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Figure 3-44: UPF-VPP - Experimental testbed setup 

 
Figure 3-45: UPF-VPP - Impact of core frequency on energy consumption and throughput: (a) Saturation and (b) 

Throughput increase 

The impact of these strategies on EE is experimentally evaluated by means of the testbed illustrated in Figure 
3-44. The UPF-VPP is the Device Under Test (DUT) deployed on an X11SDV-4C-TP8F-01 server with a 
processor Intel Xeon(R) D-2123IT @2.2GHz (4 cores) with a Thermal Design Power (TDP) of 60W. The UE and 
RAN domain is based on PacketRusher11, an open-source tool that emulates gNB and UEs, enabling high-
performance testing of the control and user planes in 5G Core Networks. The Core domain includes the 
Open5Gs control plane and the DPDK-based UPF-VPP. Finally, the Application Server domain includes two 
Iperf3 servers used for generating bidirectional TCP traffic towards the UEs. The performed tests always 
involved balancing the traffic load among available NICs, AS, and UEs. 

The energy consumption of the server hosting the UPF is measured during tests duration using powerstat12, 
a Linux tool that utilizes the Running Average Power Limit (RAPL) [42] feature of Intel processors to report 
energy consumption across different power domains (i.e., CPU package, DRAM, etc.) 

 Experimental validation 

First, as was reported in BeGREEN D4.2 [2], we analysed the impact of CPU frequencies on maximum or 
saturation throughput achievable and on the corresponding energy consumption. As shown in Figure 3-45a, 
the saturation throughput increases linearly with core frequency until reaching the NICs line limit of 
approximately 35-37 Gbps. Figure 3-45b depicts how the energy consumption increases with processed 
traffic and core frequency, highlighting how load-aware CPU frequency tunning can enhance energy 
efficiency. For instance, a core frequency of 1 GHz can process 10 Gbps of traffic using approximately 30% 
less energy than operating at 2.7 GHz (i.e., using the performance governor). Note however, that the 
improvement reduces with increasing throughput due to knee points observed at non-turbo frequencies (i.e., 
under 2.2 GHz). 

 
11 https://github.com/HewlettPackard/PacketRusher 
12 https://github.com/ColinIanKing/powerstat 

https://github.com/HewlettPackard/PacketRusher
https://github.com/ColinIanKing/powerstat
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Figure 3-46: UPF-VPP - Impact of fixed uncore frequency. (a) Throughput and Energy Consumption. (b) Delay. 

In our last analyses we have found that these knee points are caused by the uncore, which increases its 
frequency triggered by workload demands, as managed by the default uncore scaling algorithm in Intel 
processors. In particular, we monitored that at core frequencies below turbo levels, the uncore frequency 
remained at its minimum of 1.2 GHz for traffic loads under 12 Gbps. Between 12–25 Gbps, the uncore 
frequency scaled to 1.8 GHz, and for traffic loads above 25 Gbps, it reached its maximum value of 2 GHz. 
Conversely, turbo frequencies always operate at maximum uncore frequency due to PMD activity, resulting 
in a linear increase in energy consumption with traffic load, as shown in Figure 3-45b.  

This default behaviour of the uncore leads to a significant increase in energy consumption at low loads. 
Therefore, we evaluated whether tuning uncore frequency can also enhance energy efficiency. Concretely, 
we fixed it to the minimum value of 1.2 GHz using available Linux commands (i.e., setting the 
intel_uncore_frequency file in the /sys directory) and repeated the characterization illustrated in Figure 
3-45b. As show in Figure 3-46a, this configuration eliminated the knee points observed at non-turbo 
frequencies, resulting in a linear increase in energy consumption with throughput, while significantly 
reducing the energy consumption across all core frequencies (e.g., 8W in the case of turbo frequencies).  

Since the uncore manages access to the LLC cache, we also analysed a possible impact on latency in the user 
plane due to cache misses. We measured the round-trip delay of 1E6 packets using ultraping tool13 under a 
background traffic load between 20 Gbps and 25 Gbps. Obtained results, illustrated in Figure 3-46b, indicate 
that a fixed uncore frequency slightly increases the measured latency. Nonetheless, we can conclude that 
there is no significant impact on user-plane latency, as the results remain within the range of microseconds.  

Once established the impact of core and uncore frequencies, we conducted additional experiments to fully 
characterize the contribution of different processes to the energy consumption of the UPF-VPP. First, we 
analysed the impact of PMD’s polling operation, comparing the performance governor (Default column in 
Table 3-6) with cases where polling was disabled. DPDK polling was disabled through two methods: (i) 
Increasing the PMD’s usleep period to its maximum value, which effectively disables polling and affects both 
core and uncore processes (“Polling Disabled (usleep)” column), and (ii) Deactivating the DPDK plugin 
responsible for RX queue processing, which only impacts core processes (“Polling Disabled (plugin)” column). 
Furthermore, two uncore frequency configurations were evaluated: (i) free mode with the performance 
governor (2 GHz) and (ii) fixed mode at the minimum value (1.2 GHz). The findings summarized in Table 
3-6indicate the following when the performance governor is used: (i) The baseline power consumption of 
UPF-VPP is approximately 4 W, (ii) enabling active polling increases power usage by 4 W in idle conditions 
for core processes, and (iii) active polling contributes an additional power consumption of 4 W to 12 W for 
uncore processes, depending on the uncore frequency. It is important to highlight that the power impact 
described in point (ii) varies according to traffic load and core frequency, as shown in Figure 3-46. 

 
13 https://github.com/mrahtz/ultra_ping 

https://github.com/mrahtz/ultra_ping
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Figure 3-47: UPF-VPP - DRAM energy consumption. (a) Idle status, with and without polling. (b) Busy status. 

Table 3-6: UPF-VPP - Impact of DPDK Polling on Energy Consumption Using the Performance Governor 

Default 
Polling Disabled 

 (plugin) 
Polling Disabled  

(usleep) 
 Baseline Server  

(UPF stopped) 
Uncore 

 frequency 
36.11 W 32.20 W 20.28 W 16 W  2 GHz (Default) 
28.64 W 24.79 W 20.19 W 16 W 1.2 GHz (Min) 

We also analysed DRAM energy consumption as a function of load and CPU frequency. Figure 3-47a 
illustrates how DPDK polling affects DRAM energy consumption at both low and high CPU frequencies when 
the UPF is idle. Note that the energy penalty is significantly higher at turbo frequencies, contributing to the 
overall penalty of using high frequencies in worker threads observed in previous experiments. Additional 
tests were performed using a fixed uncore frequency, but no noticeable impact was detected. This suggests 
that the metric reported by powerstat tool is primarily associated with DRAM activity resulting from the 
server’s workload. We also evaluated DRAM energy consumption under varying workloads, which rises 
linearly with increasing input load across different CPU frequencies as shown in Figure 3-47b.  

To complement the analysis done in BeGREEN D4.2 [2] regarding multi-threading scenarios, we realized 
additional experiments fixing the uncore frequency. Therefore, we characterized UPF performance across 
different NIC-worker combinations under different workloads, core frequencies and uncore frequencies. 
Figure 3-48 presents three different configurations: (a) a single worker managing all NICs, as discussed in 
previous sections; (b) one worker assigned to each pair of NICs; and (c) one worker dedicated to each NIC. 
For simplicity, the figure assumes all cores are operating at the same frequency. However, alternative 
configurations have also been evaluated, which may offer slightly improved performance.  

The results emphasize the effectiveness of the fixed uncore policy (Ufix cases), which consistently reduces 
energy consumption across all configurations. Additionally, comparing various threading configurations 
reveals that, in some scenarios, using two or four threads at low frequencies provides slightly better energy 
efficiency than a single thread operating at higher frequencies. For example, at a core frequency of 1 GHz, 
where throughput reaches 35 Gbps with two or four cores, the number of threads has minimal impact on 
energy consumption. This validates the multi-threading approach not only as a way to achieve higher 
throughputs but also to decrease energy consumption.  

It is worth noting that the latest DPDK versions support dynamic RX-queue reallocation, allowing runtime 
RX-queue creation for already established workers. However, the UPF-VPP version used in our tests only 
supported reallocating pre-created RX-queues. This feature will be key for dynamically managing NIC-worker 
allocation based on changing load conditions. 

 Application to realistic traffic scenarios 

Building on the findings from the previous section, we introduce a set of adaptive CPU allocation policies 
designed to optimize energy consumption under realistic traffic conditions. To evaluate their impact, we 
analysed the possible energy savings according to the traffic pattern of a dataset from a Spanish MNO. This 
dataset captures uplink and downlink throughput data from the Packet Data Network Gateway (P-GW) in a 
specific region of Spain, covering hundreds of cells over several months, with a 15-minute time granularity. 
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Figure 3-48: UPF-VPP -  Multi-threading performance 

 
Figure 3-49: UPF-VPP - Throughput forecast and estimated energy consumption of the DUT server, assuming no NIC 

limitations. 

Due to NIC limitations, the DUT was unable to sustain the peak throughput observed in the dataset. To 
address this, we estimated the necessary CPU resources to accommodate the traffic demand. Specifically, 
we consider the linear relationship between throughput, energy consumption and CPU frequency 
characterized in the previous section, which is illustrated in Figure 3-49. According to it, achieving the 
dataset’s peak aggregated throughput of 120 Gbps would require a minimum of three cores and worker 
threads. We assume the incoming load is evenly distributed across all available interfaces, which, for the 
DUT, could be either 100 or 50 Gigabit Ethernets. 

Next, we define a formula to estimate energy consumption based on the forecasted traffic and allocated 
CPU resources, derived empirically from measurements described in the previous sections. Given that the 
UPF is deployed with N cores and worker threads, the total energy consumption of the server hosting the 
UPF under a load L can be expressed as follows: 

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐿𝐿) =  �𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑓𝑓𝑓𝑓𝑖𝑖,𝑓𝑓𝑓𝑓𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(𝐿𝐿𝑖𝑖) + 𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3-6) 

where 𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑓𝑓𝑓𝑓𝑖𝑖,𝑓𝑓𝑓𝑓𝑖𝑖 (𝐿𝐿𝑖𝑖) is the energy consumed by CPU i at core frequency fci and uncore frequency fui  

assigned to a worker thread in the UPF-VPP to poll and process a portion Li of the total load L, ECUPF,base is the 
baseline consumption of the UPF-VPP (approximately 4 W for the DUT), and ECsever is the energy consumed 
by the server for other operations (approximately 16 W for the DUT). 𝐸𝐸𝐸𝐸𝑈𝑈𝑈𝑈𝑈𝑈,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑓𝑓𝑓𝑓𝑖𝑖,𝑓𝑓𝑓𝑓𝑖𝑖 (𝐿𝐿𝑖𝑖) includes any energy 
consumed by the system to process the load Li, which we found to increase linearly with the load under a 
fixed uncore frequency as was shown in Figure 3-46. This is consistent with state-of-the-art models, such as 
the linear CPU-dependent model, which predicts power consumption based on the host's CPU utilization 
[43]. Also, note that in multi-socket servers, the assigned CPUs could have different uncore frequencies.   

The CPU allocation policies outlined in Table 3-7 are designed to enhance energy efficiency by dynamically 
adjusting CPU resources (i.e., CPU frequency, the number of active CPUs, and the uncore frequency) based 
on traffic patterns. Using these policies and the observed traffic, we applied (3-6) to calculate energy 



D4.3 – Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane 

93 

 
BeGREEN [SNS-JU-101097083] 

consumption and compared the results to a non-optimized scenario where three CPUs are overprovisioned 
at maximum frequency to accommodate peak throughput. For simplicity, the defined policies categorize 
traffic into throughput ranges and assign a uniform frequency to all CPUs within each range. However, a 
more granular approach could be implemented to achieve further energy savings. 

Table 3-7: UPF-VPP - Defined CPU Allocation Policies Based on Total Throughput 

Policy Configuration Throughput Limits (Gbps) 
P1 1 CPU at 1 GHz < 23 
P2 1 CPU at 1.8 GHz 23 ≤ 𝑥𝑥 < 38.59 
P3 2 CPUs at 1 GHz 38.59 ≤ 𝑥𝑥 < 46.3 
P4 2 CPUs at 1.4 GHz 46.3 ≤ 𝑥𝑥 < 61.74 
P5 3 CPUs at 1 GHz 61.74 ≤ 𝑥𝑥 < 69 
P6 3 CPUs at 1.9 GHz 69 ≤ 𝑥𝑥 < 120 

Figure 3-50 illustrates the results for a specific day, showing the energy consumption of the default policy (in 
orange) compared to the optimized policies (in blue). The gap between the two trends highlights the 
substantial energy savings achieved through traffic-aware CPU allocation. Notably, the dataset exhibited a 
highly regular weekly traffic pattern, leading to consistent results across different days. Based on these 
findings, the proposed approach can reduce energy consumption by an average of 30%, equating to 
approximately 11 kWh over a week for this DUT. 

These results consider a prior or oracle-based knowledge of the traffic trends. In the following section we 
will analyse the impact of simple heuristics and of traffic forecasting on the achievable energy savings, 
providing a more realistic implementation of this approach.  

 AI/ML-driven traffic-aware policy management 

In this section, we explore the benefits and considerations of applying two different ML models for 
forecasting input UPF traffic for policy management. Specifically, we consider the FB Prophet and the 
XGBoost frameworks. FB Prophet is an open-source time series forecasting tool based on an additive 
regression model 14 . On the other hand, Extreme Gradient Boosting (XGBoost) is a high-performance, 
distributed machine learning library designed for gradient-boosted decision trees (GBDT) 15 . XGBoost 
supports parallel tree boosting and is widely used for regression, classification, and ranking tasks due to its 
scalability and efficiency. The following section provides a more detailed description and validation of each 
model. 

 Model validation 

FB Prophet was developed by Facebook for time series forecasting. The time series, y(t), can be decomposed 
into multiple components as follows: 

𝑦𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) + 𝑠𝑠(𝑡𝑡) + ℎ(𝑦𝑦) + 𝜀𝜀𝑡𝑡  

In this formulation, g(t) represents the trend function, capturing non-periodic variations in the time series. 
The term s(t) accounts for periodic fluctuations, such as weekly or annual seasonality. The function h(t) 
models the influence of holidays, which may occur irregularly over varying durations.  

 
14 https://facebook.github.io/prophet/ 
15 https://xgboost.readthedocs.io/en/stable/python/python_intro.html 

https://facebook.github.io/prophet/
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
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Figure 3-50: UPF-VPP - Application of CPU resource allocation strategies to a realistic traffic scenario. 

The error term εt encapsulates any stochastic variations not explicitly captured by the model [44]. Prophet 
allows forecasting the UPF load for a specific time period based on historical data and identified trends, 
without requiring additional input features. 

XGBoost can also be used for time series forecasting, which seems a useful approach due to the clear 
correlation of load with the time found in our dataset, as was introduced in BeGREEN D4.1 [1].  In the case 
of XGBoost, the traffic forecasting model uses lagged values from previous intervals as features. In our case, 
we used the most recent value as input for the prediction (i.e., the value of the last 15 minutes interval). 

These differences between both models affect their performance in the UPF use case, as analysed below. 
For both models, the training period spans one full month, and the testing period also lasts for one month. 
As shown in Figure 3-47 and Figure 3-51, both models show similar during a regular week without anomalies; 
however, FB Prophet performs worse during an anomalous week in the dataset (referred to as the 
'anomalous week' in this section). This performance drop is due to FB Prophet's lacking the inclusion of 
lagged load values as input features. Figure 3-52 and Figure 3-53 illustrate in detail the performance during 
this week.  

 
Figure 3-47: UPF VPP - FB Prophet prediction vs Total UPF Throughput (month) 
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Figure 3-51: UPF VPP - XGBoost prediction vs Total UPF Throughput (month) 

 
Figure 3-52: UPF VPP - FB Prophet prediction vs Total UPF Throughput (Anomalous week) 

 
Figure 3-53: UPF VPP - XGBoost prediction vs Total UPF Throughput (Anomalous week) 

Table 3-8 shows the MAE and R² value of both models during the whole month, an average week and the 
anomalous week. The MAE results for Prophet show an approximate 8% error (around 10 Gbps) over peak 
values. While Prophet is easy to use and deploy, its accuracy tends to degrade when predictions extend 
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further from the training window. In our case, Prophet's trend component remains relatively flat over time 
due to training on a one-month historical period. This makes it suitable for stable patterns with a consistent 
trend but leads to significant errors during periods of abnormal and non-periodic traffic, as is the case of the 
‘anomalous week. To improve accuracy in such scenarios, the model would need to be re-fitted, requiring 
additional computational resources. In contrast, the XGBoost model, achieves a lower MAE of around 2% 
(approximately 2.5 Gbps) over peak values. It maintains stronger accuracy on future testing data without 
needing retraining, as it consistently incorporates recent lagged values that capture the latest traffic 
dynamics. This makes it less prone to performance degradation. For the anomalous week, XGBoost 
performance could potentially be improved further by including additional features, such as the number of 
active data users in the UPF or increasing lag granularity. 

Table 3-8: UPF-VPP – Comparison of FB Prophet and XGBoost Models 

Model MAE (Mbps) R² 

FB Prophet: 1 Month 10669.38 0.717 

XGBoost: 1 month 2555.67 0.96 

FB Prophet: Average Week 8063.28 0.879 

XGBoost: Average Week 1952.19 0.9914 

FB Prophet: Anomalous week 16525.44 0.33147 

XGBoost: Anomalous Week 4937.25 0.853 

 Model evaluation in the use case 
In this section we analyse the impact of the traffic forecasting on the CPU management policies presented 
in Section 3.4.1.2. For each model, we computed the saved energy for an average week in the testing month 
and for the anomalous week when using the forecasted load to decide on the applied policy. As shown in 
Table 3-9, the percentage of saved energy is around the 30% when applying both models, being very close 
to the oracle case considered in Section 3.4.1.2. As expected according to previous analysis, FB Prophet 
results are worst during the anomalous week.  

Table 3-9: UPF VPP – Impact of Model Forecasting on Saved Energy When Applying CPU Management Policies 

Model Energy Saved  
(KWh/week) 

Energy Saved  
(%) 

Average Week 
Oracle 11.08 30.39 

FB Prophet 10.93 29.97 
XGBoost 11.05 30.30 

Anomalous Week 
Oracle 11.59 33.15 

FB Prophet 9.56 27.34 
XGBoost 11.31 32.34 

However, beyond the energy-saving analysis, it is also important to consider the impact on served 
throughput when restrictive policies are applied in this scenario. To this end, we analysed three performance 
metrics: 

• Correct Policy Allocation: The policy according to forecasted traffic matches the oracle policy, which 
is based on the actual observed throughput. 

• OverSLA Policy Allocation: The policy according to forecasted traffic is more conservative than the 
oracle policy due to an overestimation of future traffic. This results in higher energy consumption 
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compared to the oracle. In this case, we compute the additional energy consumption (EC wasted). 

• UnderSLA Policy Allocation: The forecasted policy is more aggressive than the oracle policy due to 
an underestimation of future traffic. This leads to under-served throughput, which is also computed. 

Table 3-10 shows the results of this analysis for the average and anomalous weeks, showing how XGBoost 
outperforms FB Prophet in both cases and in all metrics. Note that the OverSLA decisions usually lead to a 
low increase of energy wasted. As discussed in Section 3.4.1.2, applying any CPU management policy results 
in significant baseline energy savings compared to the default use case, while the differences between 
individual policies are less pronounced for the observed throughput levels in the dataset. Therefore, 
erroneous policies do not lead to significant levels of wasted energy except for FB Prophet during the 
anomalous week due to its high throughput overestimation, as shown in Figure 3-52. The impact on 
throughput due to underestimations is also more pronounced in the case of FB Prophet, as it fails to 
accurately capture traffic peaks. On the contrary, the performance of XGBoost is very good even in during 
the anomalous week.  

Table 3-10: UPF VPP – Impact of Model Forecasting on CPU Management Policies Performance 

Model Correct OverSLA Energy 
Wasted UnderSLA Under-Served 

 Throughput 
Average week 

FB Prophet 76.19 % 14.70 % 0.94 % 9.0 % 8.57 % 
XGBoost 95.00 % 3.20 % 0.20 % 1.6 % 1.30 % 

Anomalous week 
FB Prophet 44.9 % 50.5 % 8.42 % 4.1 % 5.30 % 

XGBoost 86.0 % 13.3 % 0.77 % 0.6 % 0.78 % 

Figure 3-54 shows how the policies driven by the different models impact the energy consumption and the 
served throughput of the UPF during a selected day in the dataset. As previously discussed, the policies based 
on XGBoost predictions closely track the actual traffic trends. In contrast, FB Prophet tends to underestimate 
throughput peaks, resulting in reduced energy consumption but at the expense of under-served throughput. 

To further reduce UnderSLA errors, we considered applying the MAE obtained during the training phase as 
a correction delta added to the forecasted traffic. As shown in Table 3-11, the number of correct decisions 
decreases in both cases due to an increase in OverSLA allocations. However, the resulting impact on energy 
waste remains minimal, due to the baseline energy savings discussed earlier. On the other hand, UnderSLA 
decisions are reduced to below 1% in both cases, which is particularly beneficial for FB Prophet given its 
tendency to underestimate traffic peaks. 
 

  
Figure 3-54: UPF VPP - Impact of model forecasting on saved energy and throughput when applying CPU 

management policies 
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Table 3-11: UPF VPP – Impact of Model Forecasting on CPU Management Policies Performance 

Model Correct OverSLA Energy 
Wasted UnderSLA Under-served 

throughput 
Average week 

FB Prophet 64.8 % 34.2 % 2.90 % 0.89 % 0.80 % 

XGBoost 89.2 % 10.5 % 0.63 % 0.14 % 0.14 % 

Anomalous week 

FB Prophet 33.5 % 65.5 % 11.9 % 0.90 % 1.11 % 

XGBoost 71.2 % 28.4 % 1.9 % 0.45 % 0.58 % 

 Conclusions 

The dynamic adaptation of CPU resources to workload requirements is a key strategy for enhancing the 
energy efficiency of edge servers hosting network functions, such as the UPF. Throughout the various 
deliverables of this Work Package, we have characterized the energy consumption and performance of open-
source UPFs, specifically Open5G and OAI UPF-VPP, when deployed on bare-metal COTS servers under 
varying traffic workloads and CPU resource allocations.  

The results demonstrate that dynamic management of CPU and uncore frequencies can yield substantial 
energy savings without compromising traffic performance, particularly in DPDK-based user planes due to 
their consistently high CPU utilization. In this deliverable, we finalized the characterization of these strategies 
and explored the application of AI/ML-driven CPU management policies, applying traffic forecasts derived 
from a real dataset provided by an MNO. The results highlight the potential of these strategies, achieving 
approximately 30% energy savings without impacting the served throughput.  

Future work should explore additional techniques, such as leveraging C-states, and the integration of more 
advanced AI/ML algorithms, including reinforcement learning. 

3.5 Joint orchestration of vRANs and Edge AI services 
In this final deliverable of WP4, we evaluate the algorithm proposed in the previous deliverable. We call our 
algorithm EdgeBOL. As explained in D4.2, EdgeBOL is an online learning algorithm that solves the contextual 
bandit problem defined in D4.2. EdgeBOL identifies a policy that minimizes the aggregate energy costs while 
adhering to predetermined performance criteria of the Edge AI services. Our prototype consists of a vBS, a 
user equipment (UE), a digital power meter, and an edge server, as shown in Figure 3-55. The vBS and UE 
include an NI USRP B210 as radio unit (RU) and a general-purpose computer (Intel NUCs with CPU i7-
8559U@2.70GHz) deploying the near-RT RIC (for the vBS) and the baseband unit (BBU), implemented with 
the srsRAN suite (which emulates an O-eNB for experimentation). The vBS and UE are connected through 
SMA cables with 20 dB attenuators, and we adjust the transmission gain of the RU’s RF chains to attain 
different uplink SNR values. Without loss of generality, we set 20 MHz bandwidth for the LTE interface. 

Our edge server is equipped with a CPU Intel i7-8700K @ 3.70GHz and a GPU Nvidia GeForce RTX 2080 Ti. 
The vBS and server are connected using a switch with Gigabit Ethernet technology. To measure the power 
consumption at the BBU and the server, we use the digital power meter GW-Instek GPM-8213 with the 
GWInstek Measuring adapter GPM-001. The evaluated AI service is implemented using Detectron2 16 , 
developed by Facebook, which performs object recognition.  

 
16 https://github.com/facebookresearch/detectron2  

https://github.com/facebookresearch/detectron2
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Figure 3-55: vRAN and Edge AI Services – Experimental Testbed 

Specifically, Detectron2 is configured with a region-based convolutional NN (Faster R-CNN) comprising a 
ResNet backbone with conv4 layers and a conv5 head with a total of 101 layers. The UE sends to server 
images from the COCO data set we used in previous deliverables through the LTE uplink. The images are 
resized at the user side using the OpenCV library in Python. The bounding boxes and object classes are 
computed by Detectron2 and sent back to the UEs (LTE downlink). 
We introduced two key srseNB modifications. First, we modified the radio MAC scheduler to implement the 
two radio policies we presented in D4.2. Secondly, we integrated the O-RAN E2 interface as defined in O-
RAN specifications WG3 to enforce the radio control policies (MCS and airtime) on-the-fly and send 
consumed power consumption samples to the corresponding xApp. For the latter, we have added code into 
srsRAN to collect this information from the power meter. We have also implemented a proof-of-concept 
Near-RT RIC and Non-RT RIC with the interfaces mentioned in D4.2. We configure the GPU speed by using 
the Nvidia driver that allows us to set the maximum power management limit, ranging between 100 and 
280W. This runtime configuration does not affect the GPU operation. Note that the actual GPU consumed 
power depends on its duty cycle. 

We consider number of different actions (|ℋ| = |𝒜𝒜| = |Γ| = |ℳ| = 11, i.e. ℋ denote the set of possible 
image resolutions; 𝒜𝒜 the set of possible airtime configurations, Γ the possible GPU speed configurations; 
and ℳ the set of all possible MCS policies as defined above); hence there is a large number of |𝒳𝒳| = 114 ≅
14.6 ⋅ 103 control policies, which, in combination with the effect of the possible contexts, highlights the need 
for a data-efficient learning mechanism. Given the complexity of running experiments with multiple users, 
we rely on a single user in most of our experiments (which render trivial low-layer controllers). However, 
whenever needed (we test out multiple heterogeneous users later), we adopt simple controllers (e.g. MAC 
layer scheduling) that are detailed where relevant. In line with previous works [45][46], we select 𝛽𝛽1/2 = 2.5, 
which shows good performance in our evaluations. Finally, unless otherwise stated, we will plot our results 
with lines and shadowed areas representing, respectively, the median value and the 10th and 90th 
percentiles, across 10 independent repetitions. 

 Convergence evaluation 

To evaluate the convergence of our approach, we consider a single context and a certain constraint set with 
𝜌𝜌min  (minimum mAP performance) and 𝑑𝑑max  (maximum service delay). Dynamic context changes and 
different constraints are evaluated later.  
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Figure 3-56: vRAN and Edge AI services - Convergence evaluation. A scenario with steady channel conditions (no 

context changes), 𝜹𝜹𝟏𝟏=1 mu/W, 𝝆𝝆min = 𝟎𝟎. 𝟓𝟓, and 𝒅𝒅max = 𝟎𝟎. 𝟒𝟒 s. 

Namely, we set the mean SNR to 35 dB (good wireless conditions), 𝛿𝛿1  =  1 mu/W, 𝜌𝜌min = 0.5, and 𝑑𝑑max =
0.4 s. Figure 3-56: plots the evolution over time of the cost (𝑢𝑢𝑡𝑡), mAP performance (𝜌𝜌𝑡𝑡), delay (𝑑𝑑𝑡𝑡), and server 
and BS power consumption (𝑝𝑝𝑡𝑡𝑠𝑠 and 𝑝𝑝𝑡𝑡𝑏𝑏) as a function of 𝛿𝛿2. 

The first observation is that the cost 𝑢𝑢𝑡𝑡 (top plot) converges within roughly 25 time periods across all 𝛿𝛿2 =
{1,2,4,8,16,32, 64}. Higher 𝛿𝛿2 values induce higher cost as the price associated to each watt consumed by 
the BS grows. Remarkably, both the mAP performance and delay fall within the selected system constraints 
upon convergence with high probability. In fact, we have observed consistent results (converge speed, 
satisfaction of system constraints) irrespectively of the context and system constraints. The system power 
consumption presents interesting trade-offs with 𝛿𝛿2. In particular, small 𝛿𝛿2 (e.g., 𝛿𝛿2 = 1) induce high power 
consumption at the BS but low at the server. This is because the maximum net power consumption of our 
virtualized BS (around 7.25 W) is much smaller to that of the server (between 85 to 180 W). Therefore, if the 
associated cost (mu/W) is similar for both BS and server, our solution will minimize the power consumption 
of the server at the expense of a small energy toll for the BS. However, when 𝛿𝛿2 is relatively high (e.g., 𝛿𝛿2 =
64), the actual cost associated with the energy footprint of the BS becomes comparable, or even higher, 
than that of the server.  
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Figure 3-57: vRAN and Edge AI services - Power consumption and normalized cost for a single context as a function 

of δ_2, with δ_1=1  mu/W. Dashed lines represent our exhaustive search approach. 

Hence, our algorithm drives the system to configurations that minimize BS power consumption at the 
expense of the server energy. This latter case is relevant for situations when a small cell has a stringent power 
budget (e.g., solar-powered) or has cooling restrictions. Indeed, different types of BS have different energy 
footprint, which motivates the need for approaches that learn the relationship between power consumption 
patterns, performance metrics and configuration policies. 

 Static scenarios 

Let us now take a closer look at the power consumption and the respective policies for different constraints 
and values of 𝛿𝛿2. Figure 3-57 shows the power consumption and normalized cost once our solution has 
converged for 𝛿𝛿1 = 1 and 𝛿𝛿2 = {1,2,4,8,32} mu/W. We compute the normalized cost independently for 
each 𝛿𝛿2 so we can compare across different 𝛿𝛿2 values. We now test different constraint settings: (𝑖𝑖) 𝜌𝜌min =
0.4, and 𝑑𝑑max = 0.5 s (lax constraints), (𝑖𝑖𝑖𝑖) 𝜌𝜌min = 0.5, and 𝑑𝑑max = 0.4 s (medium constraints), and (𝑖𝑖𝑖𝑖𝑖𝑖) 
𝜌𝜌min = 0.6, and 𝑑𝑑max = 0.3 s (stringent constraints), represented in red, green, and blue in the figure. In 
addition, we represent with dashed lines the cost attainable by an offline oracle, which we obtained using a 
time-consuming exhaustive search procedure over the whole control space. Though this approach is 
unfeasible in practice, it is a good benchmark to empirically assess the optimality of our algorithm. 

Ignoring, for now, the differences across different constraints settings (different colours in the plots), we can 
make two observations. First, we can confirm our earlier observation that higher values of 𝛿𝛿2 (compared to 
𝛿𝛿1) steer our solution to shift power consumption from the server to the BS (and vice versa). Second, our 
algorithm is able to drive the system to near-optimal points of operation, when comparing the cost of 
EdgeBOL with that obtained by our oracle. 

In more detail, the figure renders very different behaviour across different constraint settings (colours in the 
plot). In the case of 𝜌𝜌min = 0.4, and 𝑑𝑑max = 0.5 s (lax constraints, in red in the plot), there is a drastic change 
in the selected policies and resulting power consumption as we increase 𝛿𝛿2 . Because these settings are 
rather lax, our solution has more leeway to explore (and then select a policy from) a larger space of feasible 
policies. This is made evident when we compare its normalized cost with that of the most stringent settings 
(𝑑𝑑max = 0.3 s, 𝜌𝜌min = 0.6, blue line in the figure): for 𝛿𝛿2 = 1, the minimum cost attained by our solution is 
25% larger for the latter, and 10% for 𝛿𝛿2 = 64. Moreover, the normalized cost consistently grows, though 
with a shrinking gap in cost across constraint settings, as we increase 𝛿𝛿2. This occurs because, in our testbed, 
the range of power values that the BS can consume (across all policies) goes between 4 and 8 W, which is 
substantially smaller to that of the server (between 50 and 200 W).  
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Figure 3-58: vRAN and Edge AI services - Policies for a single context as a function of δ_2, with δ_1=1 mu/W. 

As a result, when we increase 𝛿𝛿2, i.e., when we increase the importance given to reducing BS power, the cost 
variance across policies reduces. This may be different with different types of BS such as macro cells.  

Finally, Figure 3-58 shows the corresponding control policies for the same scenarios shown Figure 3-57. Let 
us first take a look to the lax settings (𝑑𝑑max = 0.5 s, 𝜌𝜌min = 0.4 depicted with red lines in the figure).  

When 𝛿𝛿2 is small, EdgeBOL imposes low-consuming server-side policies, i.e., low GPU speed policies. This 
certainly helps to reduce the server consumption, and the overall cost as a consequence. However, to meet 
the performance constraints, our solution has to compensate low GPU speed policies with higher image 
resolutions and higher radio policies that ease the job of the service while minimizing delay, which comes at 
at the expense of higher BS power consumption. Conversely, when 𝛿𝛿2 increases, our approach selects low-
consuming radio policies and, to compensate, lower image resolutions and higher GPU speed policies that 
help reduce service delay. On the other side, for the scenario with most stringent constraints (𝑑𝑑max = 0.3 s, 
𝜌𝜌min = 0.6, blue lines), our solution is forced to deal with a smaller space of feasible policies. Therefore, all 
policies are roughly consistent across different 𝛿𝛿2 values (with mild differences for the highest settings). 

 Heterogeneous users 

In an effort to reduce the problem of the dimensionality, we aggregate statistics of individual users (mean 
SNR, variance SNR, etc.) when describing the context. To validate that this design choice does not 
compromise optimality, we have performed a series of experiments with multiple heterogeneous users. 
Without loss of generality, we adopt simple low-level control mechanism to enforce the selected policies 
when allocated resources to individual users: (𝑖𝑖) a round-robin radio scheduling approach at the MAC layer 
of the BS, (𝑖𝑖𝑖𝑖) equal image resolution across users, (𝑖𝑖𝑖𝑖𝑖𝑖) MCS selection approach legacy of srsRAN [47] (upper 
bounded by the policy), and (𝑖𝑖𝑖𝑖) highest GPU speed to handle individual video frames allowed by the policy. 

We train the algorithm with a variable number of heterogeneous users with changing channel quality. Once 
trained, we evaluate the performance of our solution in scenarios with a fixed number 𝑁𝑁 of heterogeneous 
users. The first user has the best channel conditions (SNR = 30 dB in average) and every additional user has 
20% lower SNR. We trivially choose 𝑑𝑑max = 2 and 𝜌𝜌min = 0.6 so the system has a feasible solution in the 
worst case (with 6 users). Figure 3-59 depicts the cost of the system (as defined in eq. (1)) for scenarios with 
different values of 𝑁𝑁. We do this for different weights 𝛿𝛿2  in the trade-off between the service’s power 
consumption and that of the vBS (𝛿𝛿1 = 1 in all scenarios).  
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Figure 3-59: vRAN and Edge AI services - Empirical optimality gap in scenarios with multiple heterogeneous users. 

Each scenario has N users with different SNR conditions: user 1 has the best channel conditions (SNR = 30 dB in 
average) and every additional user has 

We compare the performance of EdgeBOL with that of an optimal oracle that finds the best possible 
combination of policies offline after an exhaustive search where all the system dynamics are known. Hence, 
though it is unfeasible to use in practice, it provides a lower bound cost that helps us assess the optimality 
gap of EdgeBOL empirically.  

The results show that the performance attained by EdgeBOL is remarkably close to that of the oracle, well 
within 2%. Though it is not shown in the plot due to space constraints, EdgeBOL satisfies the service 
constraints with probability 0.98. This validates that aggregated statistics across users suffice to provide good 
performance yet keeping the problem’s complexity tractable. We can also observe that the overall cost 
increases with the number of users. The reason is that, as each additional user has lower SNR, its transmission 
time is higher. As a consequence, EdgeBOL is forced to invest more resources (i.e., airtime, GPU speed) in 
the system to compensate this degradation of mean wireless conditions. 

 Dynamic scenarios 

We now test the performance of EdgeBOL in the presence of fast context dynamics and sudden constraint 
changes. To this end, we deploy an untrained EdgeBOL in an environment where the wireless conditions 
quickly vary between 5 and 38 dB, as depicted by the first plot in Figure 3-60, and set 𝛿𝛿1 = 1 and 𝛿𝛿2 = 8. 
The top right plot depicts the size of the safe control set over time. As expected, the safe set quickly reduces 
within roughly 25 time periods and then adapts to the eventual contextual changes, with fluctuations 
matching the context changes. Remarkably, EdgeBOL convergences upon only 3 cycles across all contexts 
under evaluation. This is possible because the knowledge acquired by EdgeBOL for one context is actually 
transferred across similar contexts. That is, EdgeBOL is able to select judicious policies, shown in the 
remaining plots of the figure, even for unseen contexts. Specifically, for this choice of 𝛿𝛿 parameters, the GPU 
speed policy and the MCS policy highly vary upon context dynamics, whereas the image resolution and the 
airtime policy remain consistently high. It is worth mentioning that this policy dynamics is substantially 
different for diverse values of 𝛿𝛿 (not shown due to space constraints).  

The above illustrates one of the major advantages of our approach, which makes appropriate decisions—
even for contexts unseen before—by inferring correlations between the cost function and the context-
control space. Conventional NN-based approaches are substantially less efficient in doing so, which renders 
EdgeBOL a particularly data-efficient solution.  

To assess this, we implement a customized version of the deep deterministic policy gradient (DDPG) [48]. 
This benchmark is inspired by [49], which is the most related work to ours. Since the DDPG is designed to 
address the full-RL problem, we need to adapt it to address a contextual bandit problem, according to our 
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formulation. The DDPG algorithm uses an actor-critic NN architecture, but the critic, instead of 
approximating the Q function (full-RL problem), it learns a new cost function referred to as DDPG cost. The 
DDPG cost takes the value of (1) when all the constraints in (2) are satisfied, and the maximum cost value 
otherwise. Note that the DDPG does not handle constraints naturally and by using the DDPG cost function 
we allow the algorithm to do it. DDPG is particularly appealing for this type of problem because it operates 
with continued-valued control spaces. We mildly modified the architecture presented in [6] with a sigmoid 
function for the actor’s output and optimized all the hyper-parameters (such as the decay) to minimize 
convergence time and performance. 

We then test EdgeBOL and DDPG in a dynamic scenario where the constraint settings change over time: (𝑖𝑖) 
𝑑𝑑max = 0.5 s, 𝜌𝜌min = 0.4  from 𝑡𝑡 = 0  through 𝑡𝑡 = 1000 ; (𝑖𝑖𝑖𝑖) 𝑑𝑑max = 0.4 s , 𝜌𝜌min = 0.6   from 𝑡𝑡 = 1000 
through 𝑡𝑡 = 2000; and (𝑖𝑖𝑖𝑖𝑖𝑖) 𝑑𝑑max = 0.5 s, 𝜌𝜌min = 0.5 from 𝑡𝑡 = 2000 on. Figure 3-61 depicts the evolution 
over time of the service delay and the mAP performance for both approaches. Not surprisingly, EdgeBOL 
rapidly converges to policies that respect the performance constraints, even when they suddenly change.  

  
Figure 3-60:  vRAN and Edge AI services - Evolution of policies for dynamic contexts (δ=8). 
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Figure 3-61: vRAN and Edge AI services - Evolution of delay and mAP upon changes on the constraint settings for 

EdgeBOL and a DDPG approach implemented with NNs (𝜹𝜹 = 𝟖𝟖). 

The non-parametric nature of our approach and the fact that we can compute safe control sets for any 
constrained setting based on prior data, allows EdgeBOL to drive the system to the new optimal points of 
operations almost instantaneously. In marked contrast, the NN-based benchmark takes a substantially 
higher number of time periods to find the new optimal—it is actually unable to converge prior to the 
constraint changes—and fails to adapt graciously upon constraint changes because NNs are parametric 
models that need to re-learn upon such changes. 

 Conclusions 

The energy-aware implementation of AI services at the network edge is increasingly important for 
performance, economic and environmental reasons. The previous measurements showed non-trivial trade-
offs between the delay and accuracy of such services, and revealed how these metrics are shaped by the 
base station and edge server control policies. In this final deliverable, using a Bayesian learning algorithm, 
the identification of a policy that minimises the aggregate energy costs minimised while adhering to 
predetermined performance criteria. This framework uses minimal assumptions and is proved effective in 
exploring the huge system configuration space. The proposed resource control mechanism is fully compliant 
with O-RAN and promising for enabling edge AI services, as it is verified experimentally using a prototype. 
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 Summary and Conclusions 
The BeGREEN D4.3 represents the culmination of efforts within Work Package 4, focusing on the final 
validation and evaluation of the BeGREEN Intelligence Plane and its AI/ML-driven solutions for enhancing 
energy efficiency in Beyond 5G (B5G) and 6G networks. This document builds upon the foundational work 
established in BeGREEN D4.1 and D4.2, refining the architecture, methodologies, and use cases to achieve 
significant energy savings without compromising network performance.  

Key Achievements: 

1. Intelligence Plane Architecture: The final architecture of the BeGREEN Intelligence Plane integrates 
advanced components such as the AI Engine, Non-RT RIC, and Near-RT RIC, along with the novel 
application of technologies like Reconfigurable Intelligent Surfaces (RIS), Integrated Sensing and 
Communication (ISAC), and cell-free distributed MIMO. This architecture enables cross-domain 
optimization and efficient management of RAN and Edge resources, ensuring seamless 
interoperability and scalability. 

2. Energy Efficiency Metrics: The AI Engine's Energy Score and Energy Rating functions provide critical 
metrics for measuring and optimizing energy efficiency across network components. These tools 
allow for absolute and relative assessments of energy performance, supporting data-driven decision-
making for energy-saving strategies. 

3. AI/ML Model Optimization: Comprehensive benchmarks of AI/ML models during training and 
serving revealed important trade-offs between energy consumption, CPU usage, and model 
performance. Techniques such as feature reduction and CPU frequency management were shown 
to significantly reduce energy overhead while maintaining model accuracy. These techniques can be 
leveraged by the Model Selection function within the AI Engine to identify and provide the most 
energy-efficient model based on specified requirements. 

4. Validation of Solutions: The document details the successful validation of key technologies, 
including: 

ο Intelligence Plane: Complementing the work reported in D4.2, we characterized the 
performance of the AI Engine under different training and service workloads, providing 
insights on EE. We also validated some functionalities, such as the generation of datasets or 
the integration of RICs and the AI Engine, which will be further evaluated in the context of 
Work Package 5 demonstrations. The Near-RT RIC's conflict mitigation capabilities were 
validated, showing a 30% improvement in energy efficiency by resolving conflicts between 
energy-saving and QoS policies. Finally, the integration of RIS-enabled ISAC solutions with O-
RAN architectures were also demonstrated, targeting enhanced indoor positioning and 
coverage extension 

ο vRAN: Cache memory is a key resource for vRANs to reduce energy consumption. We 
proposed MemorAI which strategically allocates LLC resources to minimize energy 
consumption. MemorAI comprises a digital twin and a NN classifier, providing a very efficient 
and flexible solution. MemorAI achieves almost optimal performance and can attain 
significant energy savings when compared with other strategies. 

ο 5G Carrier On/Off Switching: Demonstrated the trade-offs between energy savings and 
Quality of Service (QoS) in a realistic 5G NSA deployment, with AI-driven strategies achieving 
nearly 79% energy savings under low QoS constraints, and over 20% under high QoS 
constraints. 

ο Relay-Enhanced RAN Control: Showed that the deployment of fixed relays and their 
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dynamic activation/deactivation achieve power savings in the order of  15%-40%, depending 
on the bit rate and the power consumption model, with respect to the case of no relays. The 
use of relaying UEs to mitigate some coverage holes provides performance and power 
consumption results close to the case of fixed relays and reduces the deployment costs. 

ο UPF Energy Efficiency: Traffic-aware CPU resource management policies reduced energy 
consumption by 30% in realistic traffic scenarios, leveraging dynamic core and uncore 
frequency scaling. Traffic forecasting was shown to perform feasibly in this scenario, 
enabling the proactive determination of policies. 

ο Joint Orchestration of vRAN and Edge AI Services:  Building on prior findings that highlighted 
trade-offs between delay and accuracy, the final deliverable introduces a Bayesian learning-
based policy that minimizes energy consumption while meeting performance targets. This 
approach effectively navigates a large configuration space with minimal assumptions, aligns 
with O-RAN standards, and is experimentally validated using a prototype for edge AI services. 

Impact and Future Directions: 

The advancements presented in this deliverable highlight the commitment of BeGREEN to sustainable and 
intelligent network design. By addressing critical challenges in energy efficiency, the project paves the way 
for scalable, high-performance B5G and 6G networks that align with global environmental goals. Key 
takeaways include: 

• The importance of balancing energy savings with QoS requirements to ensure user satisfaction. 

• The potential of AI/ML-driven solutions to automate and optimize network operations dynamically. 

• The need for continuous monitoring and adaptation to evolving network conditions and traffic 
patterns. 

Future work will focus on further integrating these solutions into real-world deployments, exploring 
additional use cases, and refining the capabilities of the Intelligence Plane to support emerging technologies 
and standards. The insights and methodologies developed in BeGREEN WP4 provide a robust foundation for 
ongoing innovation in energy-efficient network management. 

Through these efforts, BeGREEN drives sustainable advancements in next-generation communication 
systems, ensuring that performance and environmental responsibility go hand in hand. 
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Appendix 1: Characterization of the gNB and relay transmitted power 
Let assume a specific macrocell gNB with cellular technology (e.g. 5G-NR) and R relays connected to this gNB. 
This work considers communication in the downlink direction, i.e., from the gNB/relays to the UEs, and 
assumes that the gNB and the relays operate at different frequencies. The UEs may connect directly to the 
gNB or through a relay (that may be either a fixed relay or a RUE). Let consider K UEs that connect directly 
to the gNB. Additionally, R relays are also connected to the gNB and each r-th relay (r=1,…,R) is serving Jr UEs.  

In case of a k-th UE (k=1,…,K) directly connected to the gNB, the capacity per Resource Block (RB) in this link 
can be determined according to the Shannon bound as: 

𝐶𝐶𝑘𝑘 = 𝐵𝐵𝑅𝑅𝑅𝑅,𝑁𝑁𝑁𝑁 · 𝜀𝜀𝑁𝑁𝑁𝑁 · 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
𝑃𝑃𝑅𝑅𝑅𝑅,𝑁𝑁𝑁𝑁 · 𝛽𝛽𝑘𝑘

𝑃𝑃𝑁𝑁
� (A1-1) 

Where PRB,NB denotes the transmitted power per RB at the gNB, PN=N0·BRB,NB is the noise power measured 
over the RB bandwidth BRB,NB, with N0 as the noise power spectral density. The term εNB is an efficiency factor 
0<εNB≤1 that accounts for the overheads associated to cyclic prefix, reference signals, control plane signalling, 
etc. The term βk in (8) corresponds to the gNB-UE link channel gain, considering the antenna gains and the 
propagation loss, defined as: 

𝛽𝛽𝑘𝑘 =
𝐺𝐺𝑇𝑇 · 𝐺𝐺𝑇𝑇
𝐿𝐿𝑘𝑘

 (A1-2) 

Where GT and GR denote the transmit and receive antenna gains, and Lk is the propagation loss between the 
gNB and the k-th UE, that includes the distance dependent loss and the slow fading (shadowing). In order to 
satisfy a specific UE bit rate requirement rb, the number of required RBs at the gNB in the downlink direction 
can be calculated as: 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁,𝑘𝑘 = �
𝑟𝑟𝑏𝑏
𝐶𝐶𝑘𝑘
� (A1-3) 

Where the operator denotes the smallest integer higher than x. 

When a j-th UE (j=1,…,Jr) is connected through a specific r-th relay (r=1,…,R), the number of RBs required at 
the gNB  (Mreq,NB,r) and at the r-th relay (Mreq,r,j) can be determined following the same procedure as before, 
by means of equations (8) and (10): 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁,𝑟𝑟 = �
𝑟𝑟𝑏𝑏

𝐵𝐵𝑅𝑅𝑅𝑅,𝑁𝑁𝑁𝑁 · 𝜀𝜀𝑁𝑁𝑁𝑁 · 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
𝑃𝑃𝑅𝑅𝑅𝑅,𝑁𝑁𝑁𝑁 · 𝛽𝛽𝑟𝑟

𝑃𝑃𝑁𝑁
�
� (A1-4) 

 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟,𝑗𝑗 =

⎢
⎢
⎢
⎡ 𝑟𝑟𝑏𝑏

𝐵𝐵𝑅𝑅𝑅𝑅,𝑅𝑅 · 𝜀𝜀𝑅𝑅 · 𝑙𝑙𝑙𝑙𝑙𝑙2 �1 +
𝑃𝑃𝑅𝑅𝑅𝑅,𝑅𝑅 · 𝛽𝛽𝑗𝑗,𝑟𝑟

𝑃𝑃𝑁𝑁,𝑅𝑅
�⎥
⎥
⎥
⎤
 (A1-5) 

Where PRB,R is the power per RB at the relay, BRB,R is the relay bandwidth per RB, and εR is the efficiency factor 
in the link between the relay and the UE. The noise power is determined as PN,R=N0·BRB,R. Finally, the channel 
gains in the gNB-Relay link and the link between the r-th relay and the j-th UE is characterised by the terms 
βr and βj,r, respectively, according to the corresponding antenna gains and propagation losses. 



D4.3 – Final Architecture and Evaluation of BeGREEN O-RAN Intelligence Plane 

112 

 
BeGREEN [SNS-JU-101097083] 

Then, the total number of RBs required at the gNB is determined as: 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁 = �𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁,𝑘𝑘

𝐾𝐾

𝑘𝑘=1

+ �𝐽𝐽𝑟𝑟 · 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁,𝑟𝑟

𝑅𝑅

𝑟𝑟=1

 (A1-6) 

Note that the first term corresponds to the required number of RBs associated to the K UEs that are directly 
connected to the gNB, and the second term is the required number of RBs at the gNB associated to the gNB-
Relay links. It is worth mentioning that, in order to satisfy the UE bit rate requirements, the total number of 
required RBs at the gNB must be below the maximum number of available RBs at the gNB (i.e. Mreq,NB<MNB). 
The total transmitted power associated to the gNB is determined as: 

𝑃𝑃𝑇𝑇,𝑁𝑁𝑁𝑁 = 𝑃𝑃𝑅𝑅𝑅𝑅,𝑁𝑁𝑁𝑁 · 𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁𝑁𝑁 (A1-7) 

Similarly, for a specific r-th relay, the total transmitted power can be determined as: 

𝑃𝑃𝑇𝑇,𝑟𝑟 = 𝑃𝑃𝑅𝑅𝑅𝑅,𝑅𝑅 · �𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟,𝑟𝑟,𝑗𝑗

𝐽𝐽𝑟𝑟

𝑗𝑗=1

 (A1-8) 

As before, in order to satisfy the UEs bit rate requirements, the number of required RBs at the relay must be 
below the maximum number of RBs MR available at the relay. 
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