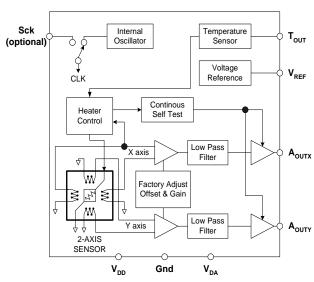


Improved, Ultra Low Noise ±1.7 g Dual Axis Accelerometer with Absolute Outputs

MXA2500G/M

FEATURES

Resolution better than 1 mg
Dual axis accelerometer fabricated on a monolithic CMOS IC
RoHS compliant
On chip mixed mode signal processing
No moving parts
50,000 g shock survival rating
17 Hz bandwidth expandable to >160 Hz
3.0V to 5.25V single supply continuous operation
Continuous self test
Independent axis programmability (special order)


APPLICATIONS

Automotive – Vehicle Security/Vehicle Stability control/ Headlight Angle Control/Tilt Sensing
Security – Gas Line/Elevator/Fatigue Sensing/Computer Security
Information Appliances – Computer Peripherals/PDA's/ Cell
Phones

Gaming – Joystick/RF Interface/Menu Selection/Tilt Sensing
GPS – Electronic compass tilt correction
Consumer – LCD projectors, pedometers, blood pressure
Monitor, digital cameras

GENERAL DESCRIPTION

The MXA2500G/M is a low cost, dual axis accelerometer fabricated on a standard, submicron CMOS process. It is a complete sensing system with on-chip mixed mode signal processing. The MXA2500G/M measures acceleration with a full-scale range of ±1.7g and a sensitivity of 500mV/g @5V at 25°C. It can measure both dynamic acceleration (e.g. vibration) and static acceleration (e.g. gravity). The MXA2500G/M design is based on heat convection and requires no solid proof mass. This eliminates stiction and particle problems associated with competitive devices and provides shock survival of 50,000 g, leading to significantly lower failure rate and lower loss due to handling during assembly.

MXA2500G/M FUNCTIONAL BLOCK DIAGRAM

The MXA2500G/M provides two absolute analog outputs.

The typical noise floor is $0.2 \text{ mg}/\sqrt{Hz}$ allowing signals below 1 mg to be resolved at 1 Hz bandwidth. The 3dB rolloff of the device occurs at 17 Hz but is expandable to >160 Hz.

The MXA2500G/M is packaged in a hermetically sealed LCC surface mount package (5 mm x 5 mm x 2 mm height) and is operational over a -40°C to 105°C (M) and 0°C to 70°C(G) temperature range.

Information furnished by MEMSIC is believed to be accurate and reliable. However, no responsibility is assumed by MEMSIC for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MEMSIC.

©MEMSIC, Inc.
One Technology Drive Suite 325,Andover MA01810,USA
Tel: +1 978 738 0900 Fax: +1 978 738 0196
www.memsic.com

MXA2500G/M SPECIFICATIONS (Measurements @ 25°C, Acceleration = 0 g unless otherwise noted; V_{DD} , V_{DA} = 5.0V unless otherwise specified)

			MXA2500G			MXA2500M		
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Units
SENSOR INPUT	Each Axis		•					
Measurement Range ¹		±1.7			±1.7			g
Nonlinearity	Best fit straight line		0.5	1.0		0.5	1.0	% of FS
Alignment Error ²	X Sensor to Y Sensor		±1.0			±1.0		degrees
Transverse Sensitivity ³			±2.0			±2.0		%
SENSITIVITY	Each Axis							
Sensitivity, Analog Outputs at								
pins		475	500	525	475	500	525	mV/g
Aoutx and Aouty ⁵		10		. 0	25		. 0	0/
Change over Temperature	E 1 4 '	-10		+8	-25		+8	%
ZERO g BIAS LEVEL 0 g Offset ⁵	Each Axis	0.1	0.0	. 0. 1	0.1	0.0	.0.1	
0 g Voltage ⁵		-0.1 1.20	0.0 1.25	+0.1 1.30	-0.1 1.20	0.0 1.25	+0.1 1.30	g V
0 g Offset over Temperature		1.20		1.50	1.20		1.50	·
o g Offset over Temperature	Based on 500 mV/g		±1.5 ±0.75			±1.5		mg/°C
NOISE PERFORMANCE	Dased on 300 m v/g		±0.73			±0.75		mV/°C
Noise Density, rms	Without frequency		0.2	0.4		0.2	0.4	mg/\sqrt{Hz}
Noise Delisity, This	compensation		0.2	0.4		0.2	0.4	111g/ V11 2,
FREQUENCY RESPONSE	compensation							
3dB Bandwidth - uncompensated		15	17	19	15	17	19	Hz
3dB Bandwidth – compensated ⁴			>160	-		>160		Hz
TEMPERATURE OUTPUT								
Tout Voltage		1.15	1.25	1.35	1.15	1.25	1.35	V
Sensitivity		4.6	5.0	5.4	4.6	5.0	5.4	mV/°K
VOLTAGE REFERENCE								
OUTPUT								
V_{Ref} output	@3.0V-5.25V supply	2.4	2.5	2.65	2.4	2.5	2.65	V
Change over Temperature			0.1			0.1		mV/°C
Current Drive Capability	Source			100			100	μΑ
SELF TEST								
Continuous Voltage at A _{OUTX} ,	@5.0V Supply, output							
Aouty under Failure	rails to		5.0			5.0		V
	supply voltage							
Continuous Voltage at A _{OUTX} ,	@3.0V Supply, output		• •			•		
A _{OUTY} under Failure	rails to		3.0			3.0		V
A I A OUTDUTE	supply voltage							
AOUTX and AOUTY OUTPUTS Normal Output Range	@5.0V Supply	0.1		4.9	0.1		4.9	V
Normal Output Range	@3.0V Supply	0.1		2.9	0.1		2.9	V
Current	Source or sink, @	0.1		100	0.1		100	
Current	3.0V-5.25V supply			100			100	μΑ
Turn-On Time ⁶	@5.0V Supply		160			160		mS
1444 04 1440	@3.0V Supply		300			300		mS
POWER SUPPLY								
Operating Voltage Range		3.0		5.25	3.0		5.25	V
Supply Current	@ 5.0V	2.5	3.1	3.9	2.5	3.1	3.9	mA
Supply Current ⁵	@ 3.0V	3.0	3.8	4.6	3.0	3.8	4.6	mA
TEMPERATURE RANGE								
Operating Range		0		+70	-40		+105	°C
NOTES			3.0V in producti	on, they can be	trimmed at th	ne factory specifically	for this low	er supply

NOTES

Guaranteed by measurement of initial offset and sensitivity.

 $^{^2\,}$ Alignment error is specified as the angle between the true and indicated axis of sensitivity. $^3\,$ Transverse sensitivity is the algebraic sum of the alignment and the inherent sensitivity

⁴ External circuitry is required to extend the 3dB bandwidth

 $^{^{5}}$ The device operates over a 3.0V to 5.25V supply range. Please note that sensitivity and zero g bias level will be slightly different at 3.0V operation. For devices to be operated at

^{3.0}V in production, they can be trimmed at the factory specifically for this lower supply voltage operation, in which case the sensitivity and zero g bias level specifications on this page will be met. Please contact the factory for specially trimmed devices for low supply voltage operation.

⁵ Output settled to within ±17mg.

ABSOLUTE MAXIMUM RATINGS*

equipment, virtually unlimited by design)

Level (g)	Duration(ms)
3000	0.5
2000	1.0
1000	2.0
700	3.0
500	5.0

*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; the functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Characteristics

Package	θја	$\theta_{ m JC}$	Device Weight		
LCC-8	110°C/W	22°C/W	< 1 gram		

Pin Description: LCC-8 Package

Pin	Name	Description	I/O
1	T _{OUT}	Temperature (Analog Voltage)	О
2	A _{OUTY}	Y-Axis Acceleration Signal	О
3	Gnd	Ground	I
4	V_{DA}	Analog Supply Voltage	I
5	A _{OUTX}	X-Axis Acceleration Signal	О
6	V _{ref}	2.5V Reference Output	О
7	Sck	Optional External Clock	I
8	V_{DD}	Digital Supply Voltage	I

Ordering Guide

Model	Package Style	Temperature Range
MXA2500GL	LCC8	0 to 70°C
	RoHS compliant	
MXA2500GF	LCC8, Pb-free	0 to 70°C
	RoHS compliant	
MXA2500ML	LCC8	-40 to 105°C
	RoHS compliant	
MXA2500MF	LCC8, Pb-free	-40 to 105°C
	RoHS compliant	

All parts are shipped in tape and reel packaging.

Caution: ESD (electrostatic discharge) sensitive device.

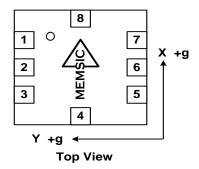
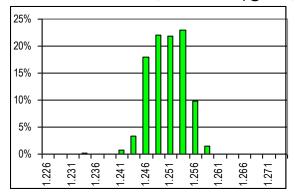
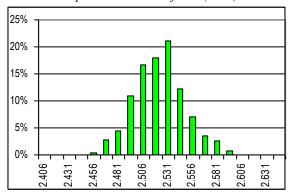


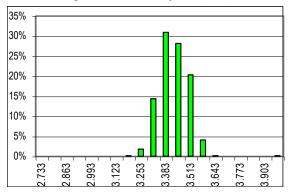
Figure 1: Note - The MEMSIC logo's arrow indicates the +X sensing direction of the device. The +Y sensing direction is rotated 90° away from the +X direction following the right-hand rule. Small circle indicates pin one (1).

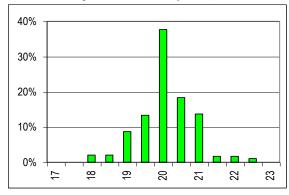

THEORY OF OPERATION

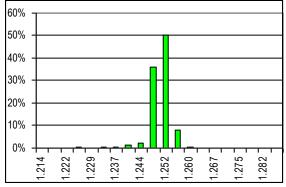
The MEMSIC device is a complete dual-axis acceleration measurement system fabricated on a monolithic CMOS IC process. The device operation is based on heat transfer by natural convection and operates like other accelerometers having a proof mass except it is a gas in the MEMSIC sensor.

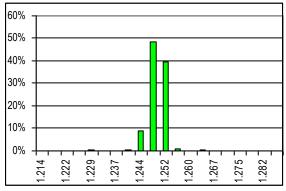

A single heat source, centered in the silicon chip is suspended across a cavity. Equally spaced aluminum/polysilicon thermopiles (groups of thermocouples) are located equidistantly on all four sides of the heat source (dual axis). Under zero acceleration, a temperature gradient is symmetrical about the heat source, so that the temperature is the same at all four thermopiles, causing them to output the same voltage.

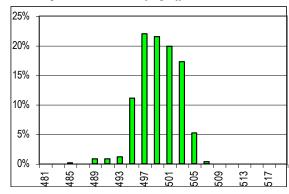
Acceleration in any direction will disturb the temperature profile, due to free convection heat transfer, causing it to be asymmetrical. The temperature, and hence voltage output of the four thermopiles will then be different. The differential voltage at the thermopile outputs is directly proportional to the acceleration. There are two identical acceleration signal paths on the accelerometer, one to measure acceleration in the x-axis and one to measure acceleration in the y-axis. Please visit the MEMSIC website at www.memsic.com for a picture/graphic description of the free convection heat transfer principle

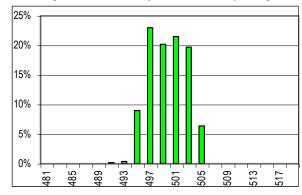

TYPICAL CHARACTERISTICS, % OF UNITS (@ 25°C, Vdd = 5V, unless specified)


Graph 1. Distribution of Tout (Volts)

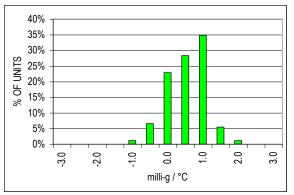

Graph 2. Distribution of Vref (Volts)


Graph 3. Distribution of Idd (mA)

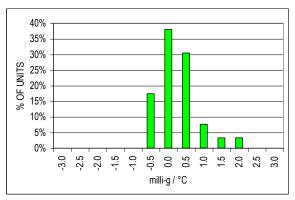

Graph 4. Distribution of Freq. Resp. (Hz)


Graph 5. Distribution of 0g Offset Aoutx (Volts)

Graph 6. Distribution of 0g Offset Aouty (Volts)

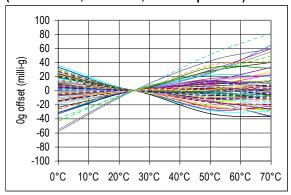


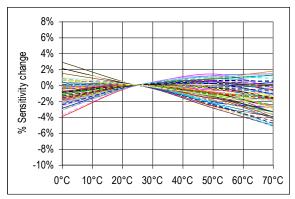
Graph 7. Distribution of A_{OUTX} Sensitivity (mV/g)

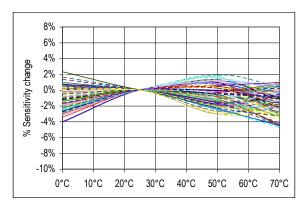


Graph 8. Distribution of Aouty Sensitivity (mV/g)


TYPICAL CHARACTERISTICS OVER TEMPERATURE (0°C to 70°C, Vdd = 5V, unless specified)


Graph 9. Distribution of Aoutx 0g offset over temperature


Graph 10. Distribution of Aouty 0g offset over temperature


Graph 11. Examples of A_{OUTX} 0g offset vs. temperature

Graph 12. Examples of AOUTY 0g offset vs. temperature

Graph 13. Examples of Aoutx Sensitivity change over temperature

Graph 14. Examples of Aouty Sensitivity change over temperature

MXA2500G/M PIN DESCRIPTIONS

 V_{DD} – This is the supply input for the digital circuits and the sensor heater in the accelerometer. The DC voltage should be between 3.0 and 5.25 volts. Refer to the section on PCB layout and fabrication suggestions for guidance on external parts and connections recommended.

V_{DA} – This is the power supply input for the analog amplifiers in the accelerometer. Refer to the section on PCB layout and fabrication suggestions for guidance on external parts and connections recommended.

Gnd – This is the ground pin for the accelerometer.

Aoutx – This pin is the output of the x-axis acceleration sensor. The user should ensure the load impedance is sufficiently high as to not source/sink >100 μ A. While the sensitivity of this axis has been programmed at the factory to be the same as the sensitivity for the y-axis, the accelerometer can be programmed for non-equal sensitivities on the x- and y-axes. Contact the factory for additional information on this feature.

 A_{OUTY} – This pin is the output of the y-axis acceleration sensor. The user should ensure the load impedance is sufficiently high as to not source/sink >100 μA . While the sensitivity of this axis has been programmed at the factory to be the same as the sensitivity for the x-axis, the accelerometer can be programmed for non-equal sensitivities on the x- and y-axes. Contact the factory for additional information on this feature.

 T_{OUT} – This pin is the buffered output of the temperature sensor. The analog voltage at T_{OUT} is an indication of the die temperature. This voltage is useful as a differential measurement of temperature from ambient and not as an absolute measurement of temperature

Sck – The standard product is delivered with an internal clock option (800kHz). This pin should be grounded when operating with the internal clock. An external clock option can be special ordered from the factory allowing the user to input a clock signal between 400kHz and 1.6MHz.

 V_{ref} – This pin is the output of a reference voltage. It is set at 2.50V typical and has 100 μ A of drive capability.

POWER SUPPLY NOISE REJECTION

Two capacitors and a resistor are recommended for best rejection of power supply noise (reference Figure 5 below). The capacitors should be located as close as possible to the device supply pins (V_{DA} , V_{DD}). The capacitor lead length should be as short as possible, and surface mount capacitors are preferred. For typical applications, capacitors C1 and C2 can be ceramic 0.1 μF , and the resistor R can be 10 Ω .

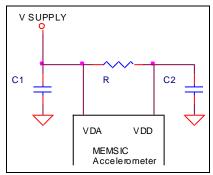


Figure 5: Power Supply Noise Rejection

PCB LAYOUT AND FABRICATION SUGGESTIONS

- 1. The Sck pin should be grounded to minimize noise.
- 2. Liberal use of ceramic bypass capacitors is recommended.
- 3. Robust low inductance ground wiring should be used.
- 4. Care should be taken to ensure there is "thermal symmetry" on the PCB immediately surrounding the MEMSIC device and that there is no significant heat source nearby.
- A metal ground plane should be added directly beneath the MEMSIC device. The size of the plane should be similar to the MEMSIC device's footprint and be as thick as possible.
- Vias can be added symmetrically around the ground plane.
 Vias increase thermal isolation of the device from the rest of the PCB.

LCC-8 PACKAGE DRAWING

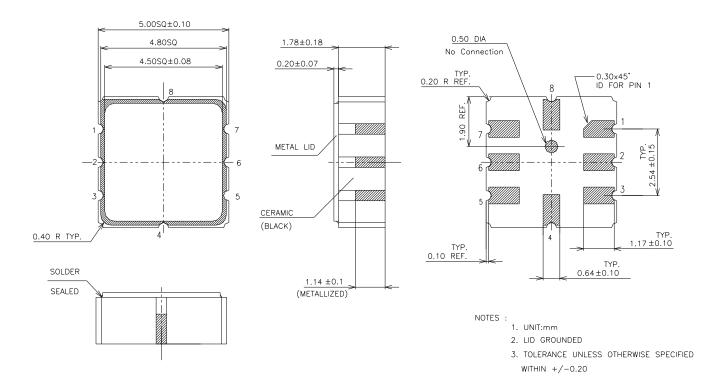


Fig 6: Hermetically Sealed Package Outline