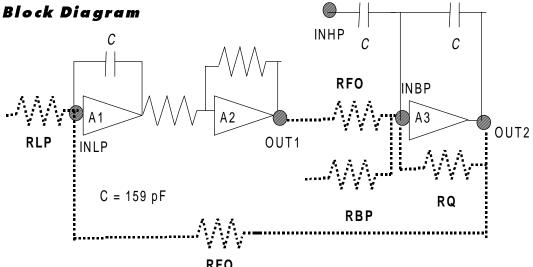


Resistor Programmable Active Audio Filter Preliminary Data Sheet

Description_


The resistor programmable continuous audio active filter IC Is a CMOS chip that can be configured for either a lowpass, bandpass, highpass, allpass or notch filter. Butterworth, Bessel, elliptic and Chebyshev filters can be implemented. The frequency range covers the audio spectrum to 20 kHz. There is a low power version with a frequency range to 5 kHz. There is a power down pin to reduce current consumption when the filter is not in use. The 8 pin part is a single filter stage, the 16 pin part offers a dual filter stage. Between 2 and 5 external resistors set the filter characteristics depending on the desired response. Q can be set from between 0.25 and 50. No clock signal is required.

Features

Independent Q, frequency and gain adjustments Low sensitivity to external resistor variation Operates up to 20 kHz Q range from 0.25 to 50 Low Power Operation Low Voltage Operation On Chip Power Save Pin Cascadable for Higher Order Filtering

Applications_

Spectrum Analyzers General Purpose Systems Portable Systems Anti-Alias Filters Reconstruction Filters Telecommunications Tracking Filters Harmonic Analysis Noise Analysis Data Communication Wireless Applications

Web Site "www.mix-sig.com"

© 1999 Mixed Signal Integration 1

MMSi Resistor Programmable Active Audio Filter Preliminary Data Sheet

Electrical Characteristics_(VDD = +5.0V, T = 25 °C)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Specifications						
Operating Voltage	VDD		2.7	5	5.5	V
Supply Current	IDD	MSRAAF1; or MSRAAF2 and PWR = HI		2		mA
Supply Current	IDD	MSRAAF3, or MSRAAF2 and PWR = LO		220		uA
Power Down Current		PD = HI		100		uA
AC Specifications						
Gain	Av		-0.5	0	0.5	dB
Signal to Noise Ratio				95		dB
Distortion	THD				0.1	%
Signal Swing		1 kHz	3.5	4		V p-p
Input Impedance	ZIN	fIN = 1 kHz		1		Mohm
Output Drive	lo			1		mA
Output Impedance	Zo	fIN = 1 kHz		500		ohm
Output Capacitive Load				50		pF
Center Frequency Range	Fo	PWR = HI	50		80	kHz
Center Frequency Range	Fo	PWR = LOW	50		10	kHz
fo Accuracy				+/- 3		%
Q Range	0		0.25		50	

Pin Description

Ordering Information

Package

8 Pin DIP

16 Pin DIP

8 Pin DIP

8 Pin SOIC 16 Pin SOIC

8 Pin SOIC

Part Number

MSRAAF1P

MSRAAF2P

MSRAAF3P

MSRAAF1S

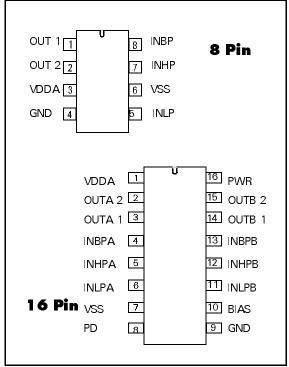
MSRAAF2S MSRAAF3S

16 Pin Package

1.	VDDA	Positive Power Supply, Typically 2.5 Volts for Split Supply, 5.0 Volts for Single Supply	
2.	OUTA 2	Output 2 for Channel A	
3.	OUTA 1	Output 1 for Channel A	
4.	INBPA	Bandpass Input for Channel A	
5.	INHPA	Highpass Input for Channel A	
6.	INLPA	Lowpass Input for Channel A	
7.	VSS	Negative Power Supply, Typically -2.5	
		Volts for Split Supply. O Volts for Single	
		Supply	
8	PD	Power Down Pin, CMOS level,	_
		Hi = Power Down	Pi
9.	GND	GND Pin, OV for Split Supplies	
		2.5 Volts Typical for Single Supply	
10	. BIAS	Bias Pin (OPEN)	
11	. INLPB	Low Pass Input for Channel B	
12	INHPB	High Pass Input for Channel B	
13	I. INBPB	Band Pass Input for Channel B	
14	OUTB 1	Output 1 for Channel B	
15. OUTB 2		Output 2 for Channel B	

Set Bias Current for Filter

power


Stages, LO=Low power, HI=normal

8 Pin Package

16. PWR

1. OUT 1 2. OUT 2	Output 1 Output 2
3. VDD	Positive Power Supply, Typically 2.5 Volts for Split Supply, 5.0 Volts for Sin ale Supply
4. GND	Ground Pin, OV for Split Supplies, 2.5 Volts Typical for Single Supply
5. INLP	Low Pass Input
6. VSS	Negative Power Supply, Typically -2.5 Volts for Split Supply, O Volts fc ingle Supply
7. INHP	High Pass Input
8. INBP	Band Pass Input

n Configuration

RBP

Resistor Programmable Audio Active Filter Preliminary Data Sheet

RFO = 1E9/Fo RA = RFO

RQ = Q * RFO

LOWPASS KLP = Lowpass Gain

RLP = RFO/KLP ; RBP = ∞ ; INHP to GND

BANDPASS KBP = Bandpass Gain

RBP = RFO/KBP * Q; RLP = ∞; INHP to GND

HIGH PASS Gain = 1

 $RLP = \infty$; $RBP = \infty$

NOTCH

RLP = RFO ; RBP = ∞

ALL PASS

An External Op Amp Inverter is required

RLP = RFO; RBP = RQ; R1 = R2

LOW PASS NOTCH

An External Resistor Divider is required on INHP

RLP = RFO; RBP = ∞

FZ = Fo * (R2/(R1 + R2))**1/2;

HIGHPASS NOTCH

RLP = ${(Fz/Fo)^{**} (1/2)}$ * RFO; RBP = ∞

Absolute Maximum Ratings

Power Supply Voltage +6V Storage Temperature -60 to +150 C Operating Temperature 0 to 70 C

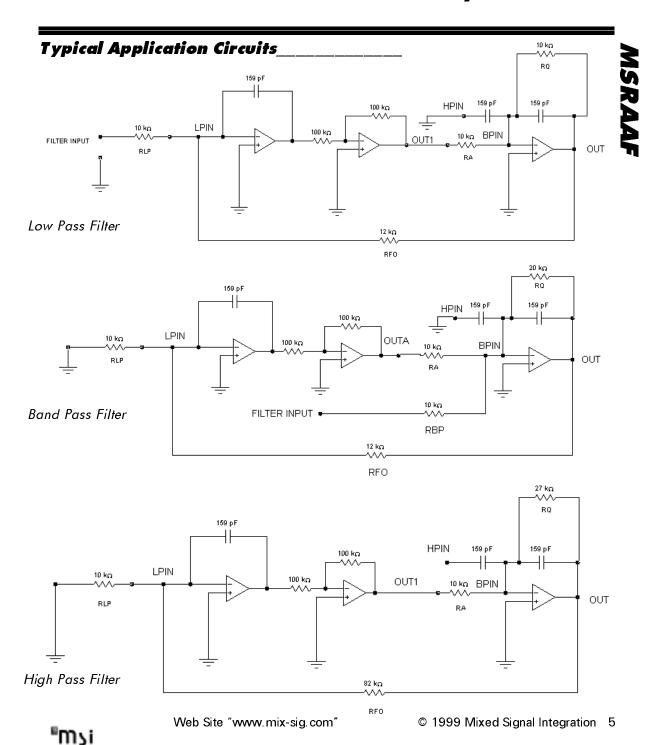
Digital Levels ____

GND

The PD is referenced between GND and VDD. In single supply applications, the digital level should be CMOS levels from VSS to VDD. In dual supply systems, the digital level should be CMOS levels from GND to VDD. The PWR pin should be connected to VSS or VDD.

GND

™n√i


Web Site "www.mix-sig.com"

© 1999 Mixed Signal Integration 4

Mixed Signal Integration Corporation reserves the right to to change any product or specification without notice at any time. Mixed Signal Integration products are not designed or authorized for use in life support systems. Mixed Signal Integration assumes no responsibility for errors in this document.

Resistor Programmable Audio Active Filter Preliminary Data Sheet

