High Frequency Resistor Programmable Universal Active Filfer Preliminary Dafa Sheet

Description

The high frequency resistor programmable universal active filter is a CMOS chip that can be configured for Lowpass, Bandpass, Highpass, Elliptic, Notch or Allpass filters using external resistors. The filters come in one (8 pin) or two (16 pin) section versions. The device is a switched-capacitor filter using a topology that requires fewer pins, less power consumption and provides higher frequency performance than other switched-capacitor universal active filters. The clock to corner ratio as well as the Q are set by external resistors.

Depending on the filter type and response, from zero to nine external resistors are needed for each section. The sections may be cascaded to realize higher order filters.

The devices have a selectable nominal sample to corner ratio of either 6.25 to 1 or 12.5 to 1 and come in either a low power version (for 100 kHz) or a higher power version (for 500 kHz). The devices are double sampled to reduce the clock frequency by a factor of two.

Feafures

Low Power Consumption
High Frequency Operation
Low Cost
Small Package Size
Wide O Range
Wide Clock to Center/Corner Frequency
Range
Ren DIP or SOIC
Accurate Switched-Capacitor
Technology

Applications

General Purpose Filtering
Portable Equipment
Instrumentation

Absolufe Maximum Ratings

\qquad

| Power Supply Voltage | +6 v |
| :--- | ---: | ---: |
| Storage Temperature | -60 to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature | 0 to $70^{\circ} \mathrm{C}$ |

Ordering Information

\qquad

Part Number	Package	Operating Temperature
MSU1HF1P	8 Pin Dip	$0-70^{\circ} \mathrm{C}$
MSU1HF1S	8 Pin SOIC	$0-70^{\circ} \mathrm{C}$
MSU1HF2P	8 Pin Dip	$0-70^{\circ} \mathrm{C}$
MSU1HF2S	8 Pin SOIC	$0-70^{\circ} \mathrm{C}$
MSU1HF3P	8 Pin Dip	$0-70^{\circ} \mathrm{C}$
MSU1HF3S	8 Pin SOIC	$0-70^{\circ} \mathrm{C}$
MSU1HF4P	8 Pin Dip	$0-70^{\circ} \mathrm{C}$
MSU1HF4S	8 Pin SOIC	$0-70^{\circ} \mathrm{C}$
MSU2HF1P	16 Pin Dip	$0-70^{\circ} \mathrm{C}$
MSU2HF1S	16 Pin SOIC	$0-70^{\circ} \mathrm{C}$

High Frequency Resistor Programmable Universal Active Filfer Preliminary Dafa Sheef

Electrical Characteristics

\qquad
$\left.\begin{array}{|l|c|l|l|l|}\hline \text { PARAMETERS } & \text { SYMBOL } & \text { CONDITIONS } & \text { MIN TYP MAX } & \text { UNITS } \\ \hline \text { DC Specifications } & & & & \\ \hline \text { Operating Voltage } & \text { VDD } & & 4.5 & 5.0 \quad 5.5 \\ \hline \text { Supply Current } & \text { IDD } & \text { MSU2HF1 PWR }=1 \\ \text { MSU2HF1 PWR }=0 \\ \text { MSU1HF1/3 } \\ \text { MSU1HF2/4 }\end{array}\right)$
note(1): the clock to corner ratio is one-half the sample to corner ratio
note(2): 100 mV sine wave clock requires capacitive coupling

Block Diagram

\qquad

*BPP input is noninverting

High Frequency Resistor Programmable Universal Active Filfer Preliminary Dafa Sheet

Pin Description			
16 Pin	8 Pin		
1		PWR	Power Select Pin $0=$ High $1=$ Low
2	8	VSS	Negative Supply, Typically 0V for single supply, - 2.5 V for dual supply
3	1	OUT1	Section One Output
4	5	GND	Ground Reference, Typically 2.5V for single supply, OV for dual supply
5	2	LP1	Section One Lowpass Input
6	3	BPN1	Section One Negative Bandpass Input
7		BPP1	Section One Positive Bandpass Input
8	4	HP1	Section One High Pass Input
9		HP2	Section Two High Pass Input
10		BPP2	Section Two Positive Bandpass Input
11		BPN2	Section Two Negative Bandpass Input
12		LP2	Section Two Lowpass Input
13	6	CLK	Input Clock, Typically 200 mV for AC coupled sine wave, 5 V for CMOS input
14		OUT2	Section Two Output
15		FO	Clock to Center/Corner, Select Pin, Low $=6.25$ to 1 High $=3.125$ (sample rate is 2 x)
16	7	VDD	Positive Supply, Typically 5V for single supply, 2.5V for dual supply

Pin Configuration \qquad

High Frequency Resisfor Programmable Universal Active Filfer Preliminary Dafa Sheet

Filter Types Available			Block D	Diagram		
	MSU2HF1	MSU1HF1/4				
Lowpass	yes	yes				
Bandpass	yes	yes	LP	- Σ		Σ
Highpass	yes	yes				
Lowpass elliptical	yes	yes				
Highpass elliptical	1 yes	yes				
Notch	yes	yes				
Oscillator	yes	no				
Allpass	yes	no				
Biquad	yes	no		BP+	BP-	HP

Programming Non-Linearities \qquad Transfer Functions \qquad

25

Lowpass

$H(s)=-\frac{\omega_{0}^{2}}{S^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}{ }^{2}}$

Bandpass

$H(s)=\frac{-\left(\omega_{0} / Q\right) S}{s^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}^{2}}$

Highpass

$$
H(s)=\frac{S^{2}}{s^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}^{2}}
$$

Lowpass Elliptic

$$
H(s)=\frac{\left(\omega_{0} / \omega_{z}\right)^{2} S^{2}+\omega_{0}^{2}}{s^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}^{2}}
$$

Highpass Elliptic

$$
H(s)=\frac{s^{2}+\left(\omega_{z} / \omega_{0}\right)^{2} \omega_{0}^{2}}{s^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}^{2}}
$$

Notch
$H(s)=\frac{s^{2}+\omega_{0}^{2}}{s^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}^{2}}$
Allpass
$H(s)=\frac{S^{2}-\left(\omega_{0} / Q\right) S+\omega_{0}{ }^{2}}{S^{2}+\left(\omega_{0} / Q\right) S+\omega_{0}{ }^{2}}$

High Frequency Resisfor Programmable Universal Active Filfer Preliminary Dafa Sheet

NOTE:

For lowpass, lowpass elliptical, highpass elliptical, allpass and notch filters. This limitation due to the particular ratio of R_{1} and R_{2} and allows realizable values of R_{3}. Other minimum values of $\mathrm{fc} / \mathrm{fo}$ can be obtained by using other values of R_{1} and R_{2} in the basic biquad equations.

Assumption (1) $R_{1}=R_{2} ; D C$ Gain $=$ Unity
$f_{0}=\sqrt{K_{1}} \cdot \frac{f c}{\alpha(2)} \quad K_{1}=\frac{R_{3}}{R_{1}+2 R_{3}}$

$$
\mathrm{Q}=\sqrt{\frac{K_{1}}{K_{2}}} \quad \mathrm{~K}_{2}=\frac{R_{6}}{R_{4}+R_{6}}
$$

(1) If a gain other than unity is desired then gain $=R_{1} / R_{2}$ and K_{1} from the biquad equations should be substituted for K_{1}
(2) where α is 6.25 or 12.5 .

Gain $\quad(1)=\frac{1}{K_{2}}$
$\mathrm{f}_{\mathrm{O}}=\sqrt{\mathrm{K}_{1}} \cdot \frac{\mathrm{fc}}{\overline{\alpha(2)}}$
$K_{1}=\frac{R_{3}}{R_{1}+R_{3}}$
$\mathrm{Q}=\frac{\sqrt{\mathrm{K}_{1}}}{\mathrm{~K}_{2}}$
$\mathrm{K}_{2}=\frac{\mathrm{R}_{6}}{\mathrm{R}_{4}+\mathrm{R}_{6}}$
(1) Gain may be adjusted independent of O using the resistor divider described by K_{5} from the biquad equations. Use the K_{5} equation in place of K_{2} for the gain equation only.
(2) where α is 6.25 or 12.5 .

Assumption(1) $\mathrm{R}_{4}=\mathrm{R}_{5}$; Gain $=$ Unity
$\mathrm{f}_{\mathrm{O}}=\sqrt{\mathrm{K}_{1}} \cdot \frac{\mathrm{fc}}{\alpha(2)} \mathrm{K}_{1}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{1}+\mathrm{R}_{3}}$
$\mathrm{Q}=\frac{\sqrt{\mathrm{K}_{1}}}{\mathrm{~K}_{2}} \quad \mathrm{~K}_{2}=\frac{\mathrm{R}_{6}}{\mathrm{R}_{4}+2 \mathrm{R}_{6}}$
(1) For gains not equal to unity, gain $=$
R_{4} / R_{5} and K_{2} should be replaced with
K_{2} from the biquad equations.
(2) where α is 6.25 or 12.5 .

Gain = Unity
$f_{0}=\sqrt{K_{1}} \cdot \frac{f c}{\alpha(1)} \quad K_{1}=\frac{R_{3}}{R_{1}+R_{3}}$
$0=\frac{\sqrt{K_{1}}}{K_{2}}$
$K_{2}=\frac{R_{6}}{R_{4}+R_{6}}$

High Frequency Resistor Programmable Universal Active Filfer Preliminary Dafa Sheet

Gain $=$ Unity; $R_{1}=R_{2}$
$\mathrm{f}_{0}=\sqrt{\mathrm{K}_{1}} \cdot \frac{\mathrm{fc}}{\alpha} \quad \mathrm{K}_{1}=\frac{\mathrm{R}_{3}}{\mathrm{R}_{1}+2 \mathrm{R}_{3}}$

$$
\mathrm{Q}=\frac{\sqrt{K_{1}}}{\mathrm{~K}_{2}} \quad \mathrm{~K}_{2}=\frac{\mathrm{R}_{6}}{\mathrm{R}_{4}+\mathrm{R}_{6}}
$$

(1) where α is 6.25 or 12.5 .

The biquad is the most general purpose filter type. By adjusting the values of K1 through K6, virtually any second order transfer function can be achieved. In some cases, it may be necessary to use an inverting op amp to achieve the correct polarity on these constants.

$$
\begin{gathered}
\text { VOUT }=\frac{\operatorname{VIN}\left[-K_{3} \mathrm{~S}_{2}-\mathrm{K}_{4} \mathrm{~S} \frac{\mathrm{fc}}{4}+\mathrm{K}_{5} \mathrm{~S} \frac{\mathrm{fc}}{4}-\mathrm{K}_{6} \frac{\mathrm{fc}^{2}}{16}\right]}{\mathrm{S}_{2} \frac{\mathrm{~K}_{2} \mathrm{~S} \frac{\mathrm{fc}}{4}+\mathrm{K}_{1} \frac{\mathrm{Fc}^{2}}{16}}{}} . \frac{}{\frac{16}{4}}
\end{gathered}
$$

