

Optimizing service center siting for disaster response

Erica Gralla
The George Washington University
egralla@gwu.edu

Julia Moline Federal Emergency Management Agency

Jarrod Goentzel

Massachusetts Institute of Technology

Introduction

- Where to site distribution points or service centers after a disaster?
- Multiple goals
 - Enable easy access for affected population
 - Use resources efficiently (cost, staff)
- This presentation describes work with the US Federal Emergency Management Agency (FEMA)
 - Model and lessons are transferable to international context, siting distribution points or service locations

FEMA Disaster Recovery Centers (DRCs)

- Set up by FEMA near disasterimpacted areas
- Opened quickly after disaster for limited time
- Population can access assistance on disaster relief resources available from multiple government and non-government sources

Colorado floods (2013)

How to locate and staff DRCs initially, and how to adjust and close them over time?

Research goals

- Help FEMA effectively utilize resources and improve service through decision support for locating and staffing DRCs
- Explore implementation challenges for data-driven decision support in disaster response practice
 - Lack of trust for 'inflexible' models
 - Urgency trumps efficiency
 - Policy and regulations

Service center siting decisions

- A disaster has occurred
- You know:
 - What kind of damage and where
 - Approximate population of these areas
 - (maybe) some relevant data on who needed assistance in similar disasters
- You decide:
 - Where to site service centers and how many staff to allocate to each center

Need for decision support

- Complex coordination is required
 - Federal/state/local stakeholders have varying incentives and objectives (social, economic, political, etc.)
 - No formal decision process for opening/closing and staffing DRCs

- Multiple competing goals
 - Reasonable travel time for affected population
 - Sufficient staff to provide services
 - Highly visible help to population
 - Minimize costs
- Our aim: develop systematic decision support tool
 - Mitigate complex incentives
 - Align stakeholders

Two models for decision support

- Jurisdiction model
 - Simple, easy to understand
 - Formalizes what decisionmakers are already doing
 - Uses data and models to make current process more efficient

- Travel time model
 - Sophisticated optimization is powerful but harder to understand
 - Challenges current assumptions to improve service and save costs

Jurisdiction model

- Decisions are made on a countyby-county basis.
- Approach: DRCs are opened if the expected demand (visitors) exceeds a minimum threshold.
 - Set a minimum threshold for opening a DRC
 - 2. Estimate expected demand (relationship from historical data)
 - 3. Open min. DRCs with required staff

Public Domain, https://commons.wikimedia.org/w/index.php?curid=373216

Travel time model

- Decisions are made on the whole disaster level (i.e. county lines do not matter).
- Approach: Optimization model (MILP) ensures every visitor can reach a DRC within one hour while minimizing cost
 - Fixed and variable DRC costs
 - Travel time costs

Public Domain, https://commons.wikimedia.org/w/index.php?curid=373216

Ongoing operations

- Approach
 - Project next week's expected demand
 - Based on data from four past disasters
 - Reduce staff-hours and/or close DRCs as warranted by lower demand
 - Using thresholds used in the Jurisdiction Model
- Jurisdiction model applies this approach for each county
- Travel time model applies this approach system-wide, closing the lowest-trafficked DRCs first

Evaluating the models

- Compare models to actual results in three past disasters in 2013
 - Flash floods in Colorado (FEMA Disaster Number 4145)
 - Flash floods in Illinois (4116)
 - Tornadoes in Illinois (4157)
- Disasters were chosen to explore different disaster types and rural/urban settings and where sufficient data were available to make comprehensive comparisons

Results: capacity

Chicago-area floods

Actual capacity was far greater than demand. Both models provide a much better match.

Results: travel time

Some visitors had to travel quite far.
The travel time model guarantees improvement.

Cost and number of DRCs

Costs in week 1 were far greater than necessary.

Both models significantly reduce costs, largely through reductions in number of DRCs.

Results: Maps

Travel time model (green stars) places centers more equitably than jurisdiction (orange squares); both are more efficient than actual response (blue pins).

Chicago-area flooding

Colorado flooding

Champaign-area tornadoes

Summary of results

- Major improvements over current method of DRC allocation
 - Cost savings of **55-85%**, or \$158k-\$1.5m just in the first week
 - Sufficient service to meet nearly all demand
 - Travel time model guarantees improved service and equitable access

Discussion

- Both models save significant costs and better meet capacity
- Jurisdiction model is easy to use, fits current processes, uses data to support collaborative decision-making, and highlights the key decision points (e.g., threshold)
 - But it may leave a small number of people without access to a DRC in their counties
- Travel time model ensures reasonable and equitable DRC access, and gains efficiencies by ignoring county lines
 - But it is harder to use and to understand

Implementation at FEMA

- Jurisdiction model has been partially implemented at FEMA
 - 2014 Michigan floods
 - 2016 severe storms and flooding in Louisiana
 - 2016 Hurricane Matthew
 - 2017 hurricanes in Texas, Florida, and Puerto Rico
 - •
- Barriers to full implementation
 - FEMA works with stakeholders, who vary from response to response, and have different goals, approaches, considerations
- Record of success in past disasters helps to build trust for future use
 - More easily implementable model paves the way for further sophisticated approaches

	DRC #	Parish	City	Recommendation	
East Baton Rouge	3	East Baton Rouge	Baton Rouge	Keep open, add 5 staff	ú
	6	East Baton Rouge	Baton Rouge	Close	X 7 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	8	East Baton Rouge	Zachary	Keep open, reduce by 1 staff	-1
	11	East Baton Rouge	Baton Rouge	Keep open, add 6 staff	-1
	19	East Baton Rouge	Baker	Keep open, reduce by 2 staff	-1
	20	East Baton Rouge	Baton Rouge	Keep open, reduce by 10 staff	-1
	2A	East Baton Rouge	Central	Keep open, add 3 staff	-1
Livingston	16	Livingston	Springfield	Keep open, add 2 staff	-1
	17	Livingston	Denham Springs	Keep open, add 5 staff	-1
	1A	Livingston	French Settlement	Keep open, no change	-1
	4A	Livingston	Denham Springs	Keep open, add 6 staff	-1
	6A	Livingston	Walker	Close	- 2
All Others	1	Tangipahoa	Hammond	Keep open, no change	-1
	5	Tangipahoa	Amite	Keep open, no change	1
	7	Ascension	Gonzales	Keep open, add 4 staff	-1
	9	St Martin	Breaux Bridge	Close	- 3
	10	Iberia	New Iberia	Keep open, reduce by 1 staff	-1
	12	East Feliciano	Clinton	Keep open, reduce by 1 staff	-1
	13	St Landry	Eunice	Keep open, reduce by 1 staff	4
	14	Iberville	St. Gabriel	Close	- 3
	15	Vermillion	Abbeville	Keep open, reduce by 1 staff	4
	18	Lafayette	Lafayette	Keep open, reduce by 1 staff	-1
	2	St Helena	Greensburg	Keep open, reduce by 1 staff	-1
	21	Acadia	Crowley	Keep open, add 1 staff	-1
	3A	Point Coupee	New Roads	Keep open, reduce by 2 staff	-1
	5A	Evangeline	Ville Platte	Keep open, reduce by 1 staff	100000000000000000000000000000000000000
	22	West Baton Rouge	West Baton Rouge	Keep open, reduce by 3 staff	- 4

DR4277 DRC Analysis: Step-by-Step Instructions

- 1. For each DRC:
 - a. Count the number of Applicant Services Specialists (ASSPs)
 - b. Count the total number of visitors in the last week-long period
 - Calculate the number of staff justified by last week's visitors as

$$Staff fustified = \frac{Total \ visitors \ last \ week}{1 \frac{visitor}{staff} - hour \ \times Number \ of \ hours \ DRC \ was \ open}$$

- Calculate staff overage or underage as the difference between the current number ASSPs and the justified number of ASSPs.
- e. Calculate the total number of visitors expected for the coming wee

Next week'svisitors = 0.8 × Last week'svisitors

Calculate the number of staff justified by next week's visitors as:

$$Staff fustified = \frac{Total \ expected \ visitors \ next \ week}{1 \frac{visitor}{staff} - hour \ \times Number \ of \ hours \ DRC \ was \ open}$$

- g. Calculate staff overage or underage as the difference between the current number of ASSPs and the justified number of ASSPs.
- h. If desired, can calculate 2 weeks out by reducing expected visitors by another 20%.
- a. Sum the values calculated above for all DRCs in the parish
- b. Calculate the range of potential DRCs supported this week and next week as follows

$$Large\ DRCs\ supported = \frac{Total\ staff\ justified}{ASSPs}$$

Medium DRCs supported = Total staff justified

Conclusions

- There are significant cost savings opportunities
- Data- and model-driven decision support tools (even simple ones)
 can lead to major benefits in practice
- Building easy-to-implement models can build support for decision support tools

Thank you

Contact: Erica Gralla egralla@gwu.edu

Julia Moline Federal Emergency Management Agency

Jarrod Goentzel Massachusetts Institute of Technology

Erica Gralla The George Washington University egralla@gwu.edu

