
1. UNFIXED BUGS
CAMOUFLAGE OTHER BUGS

How many ti mes have you heard a tester say,
“Good news, I’ve re-tested the bug you fi xed and

it’s working perfectly, but I’m now observing a new
bug”? You might be in luck, fi xing a bug may reveal no
further problems, but postponing this kind of discovery
is a risky strategy. What happens if that Priority 3 bug
you’ve been ignoring has been camoufl aging a Priority

1, or worse sti ll, a bug that will require signifi cant
alterati ons to the soft ware to fi x? If you have one

of these bugs hiding somewhere in your code,
the sooner you discover it, the bett er. Don’t

delay fi nding important problems; fi x
bugs as soon as you fi nd them.

2. UNFIXED BUGS
SUGGEST QUALITY ISN’T

IMPORTANT

We’re all professionals at heart, but it’s surprising how
quickly a team can fi nd themselves in a downward spiral.

A developer working on soft ware that already contains
hasti ly writt en, error prone functi ons, with litt le or no unit

test coverage, is likely to add more code of the same nature.
Similarly, a tester who has seen tens of reported bugs go

unfi xed is unlikely to be enthusiasti c about reporti ng many
more. Of course, it isn’t just developers and testers that are

aff ected. Over ti me, every member of the team will start
to ask themselves, “what’s the point”, why aim for a
high quality product when a substandard one is the

accepted status quo. Don’t set substandard
quality expectati ons; fi x bugs as soon as

you fi nd them.

3. DISCUSSING UNFIXED
BUGS IS A WASTE OF TIME

Regardless of whether it’s part of project planning,
during a dedicated triage meeti ng or just gathered

around a desk, discussing unfi xed bugs is a waste of ti me.
There really is only one questi on that needs answering, “does
this bug need to be fi xed”? Everything else, whilst interesti ng,

is just noise. Should we categorise this bug as Priority 3 or
a Priority 4? How long will it take to fi x? Should we fi x bug
113 fi rst or bug 114? These are all questi ons that could be

avoided (including the oft en lengthy conversati ons that
follow) if teams fi xed bugs as soon as they found them.

Without doubt, every project will have its share of
bugs that need special att enti on, but few projects

require this level of att enti on to be the norm.
Don’t waste ti me with unnecessary

discussions; fi x bugs as soon as
you fi nd them.

4. UNFIXED BUGS LEAD
TO DUPLICATE EFFORT

The greater the number of unfi xed bugs, the harder it
is to identi fy whether a bug has already been reported.
Imagine a scenario where there are only 5 unfi xed bugs.

When a “new” bug is discovered, it’s easy to identi fy whether
that bug has been reported by someone else. Now imagine
trying to perform the same task when there are 50 unfi xed

bugs in circulati on. It’s either going to take a disagreeably long
amount of ti me (ti me which could be bett er spent looking for

other bugs) or the thought of such an overwhelming task
will cause it to be abandoned, oft en leading to duplicate

bugs being reported. These duplicate bugs lead to
duplicate investi gati on and duplicate re-testi ng.
Don’t waste ti me on unnecessary duplicati on;

fi x bugs as soon as you fi nd them.

5. UNFIXED BUGS LEAD
TO UNRELIABLE METRICS

Diff erent teams analyse bugs in diff erent ways.
Some casually monitor how many are left to be fi xed,
whilst others track everything from their density to

their lifespan. Regardless of the complexity, every bug-
based metric relies on accurate underlying data. As the
number of unfi xed bugs increases, it becomes increasing

diffi cult to maintain accurate bug informati on. Even if
the informati on was correct at the ti me, the longer

a bug is left unfi xed, the greater the chance that
informati on will diverge from reality. The resulti ng

misinformati on then ripples through the team.
Don’t fall foul of project decisions based

on incorrect informati on; fi x bugs
as soon as you fi nd them.

6. UNFIXED BUGS
DISTRACT THE ENTIRE TEAM

When somebody encounters an unfi xed bug a number
of distracti ng questi ons are planted in their mind. Take

a developer who is about to make an enhancement when
they noti ce a bug. Should they fi x the bug fi rst, has somebody
else fi xed it but not checked-in, can they rely on the buggy code

to be the basis for their own? Similarly, imagine a tester who
has stumbled across a bug in one functi onal area whilst setti ng
up the pre-conditi ons to test another. Should they postpone
testi ng the intended area and instead explore around the bug

they stumbled across, has this bug already been reported
and would exploring it be a waste of ti me, could this

bug (positi vely or negati vely) pollute the results
of the planned tests? Don’t let your team be

distracted by unfi xed bugs; fi x bugs as
soon as you fi nd them.

7. UNFIXED BUGS HINDER
SHORT-NOTICE RELEASES

Once in a while an event occurs that forces a team to
release all or part of their soft ware when they least expect
it. Maybe an emergency patch is needed to fi x a bug in the

producti on environment, or an unexpected visit from the proj-
ect sponsor requires the latest release to be installed on a demo

laptop. These events can be taxing at the best of ti mes, oft en
made worse by the presence of one or more unfi xed bugs. It may
only take a relati vely short ti me to perform the release itself, but

with unfi xed bugs in the code, how long will it take to get the
soft ware ready for release? Even if a team can quickly fi x any

bugs blocking the release, there is also the ti me required to
re-test the bugs to consider. The result is oft en a delayed

release or a release that contains only the most glar-
ing bugs removed. Don’t let your releases be

hindered by unfi xed bugs; fi x bugs as soon
as you fi nd them.

8. UNFIXED BUGS LEAD
TO INACCURATE ESTIMATES

No two bugs are ever the same. Some require mere
seconds to investi gate; others take hours to diagnose. Some
take minutes to fi x; others take several days. Some can be
automati cally re-tested; others require manual verifi cati on.

Combine together these uncertainti es and you can see why the more
unfi xed bugs a project has the less accurate their esti mates become.
It’s easy to fall into to trap of thinking that the eff ort required to fi x

and re-test bugs fades into insignifi cance compared to other project
work and they can be ignored / managed via a healthy chunk of
conti ngency – this is rarely the case. Even with a conti ngency in

place and detailed analysis of each bug performed to understand
whether the conti ngency is suffi cient, a team can never truly

know how long it will take to fi x and re-test each bug
unti l the work is complete. Don’t misinform your

stakeholders with inaccurate esti mates; fi x
bugs as soon as you fi nd them.

9. FIXING FAMILIAR
CODE IS EASIER THAN

UNFAMILIAR CODE

The human mind is capable of many incredible feats,
but retaining informati on indefi nitely is not one of them.

Over ti me our memory decays and things we used to know
inti mately become blurred and unfamiliar. The code a team

writes is no excepti on and for this reason it is easier for a team
to fi x a bug in code they edited earlier that day compared to

code they haven’t seen for a week or two. A team can re-
duce the eff ect of memory decay by sti cking to good devel-

opment principles, but this will only reduce the eff ect of
memory decay, it can never alleviate it completely.

Avoid the frustrati on caused by having to fa-
miliarise yourself with a piece of code you

once knew; fi x bugs as soon as you
fi nd them.

10. FIXING A BUG TODAY
COSTS LESS THAN TOMORROW

For all the reasons listed in points 1 to 9, fi xing a
bug today will cost you less than fi xing the same bug

tomorrow. If a bug is left to fester in the soft ware you
are developing, confi guring or maintaining it may camou-
fl age other bugs, demoti vate the team by suggesti ng qual-
ity isn’t important, become the topic of pointless conver-
sati ons, cause duplicate eff ort, lead to incorrect project
metrics, distract the project team, hinder short-noti ce
releases, invalidate esti mates and lead to unnecessary

frustrati on. And the longer you leave a bug before
fi xing it, the more likely these things are to oc-

cur and to a greater extent. Don’t put your
project at risk; fi x bugs as soon as you

fi nd them.

bugs as soon as you fi nd them.

Regardless of whether it’s part of project planning,
during a dedicated triage meeti ng or just gathered

around a desk, discussing unfi xed bugs is a waste of ti me.
There really is only one questi on that needs answering, “does
this bug need to be fi xed”? Everything else, whilst interesti ng,

4. UNFIXED BUGS LEAD

Some casually monitor how many are left to be fi xed,
whilst others track everything from their density to

their lifespan. Regardless of the complexity, every bug-
based metric relies on accurate underlying data. As the
number of unfi xed bugs increases, it becomes increasing

diffi cult to maintain accurate bug informati on. Even if
the informati on was correct at the ti me, the longer

a bug is left unfi xed, the greater the chance that
informati on will diverge from reality. The resulti ng

misinformati on then ripples through the team.

Don’t waste ti me on unnecessary duplicati on;
fi x bugs as soon as you fi nd them.

made worse by the presence of one or more unfi xed bugs. It may
only take a relati vely short ti me to perform the release itself, but

with unfi xed bugs in the code, how long will it take to get the
soft ware ready for release? Even if a team can quickly fi x any

bugs blocking the release, there is also the ti me required to
re-test the bugs to consider. The result is oft en a delayed

release or a release that contains only the most glar-

bugs as soon as you fi nd them.

10. FIXING A BUG TODAY
COSTS LESS THAN TOMORROW

REASONS WHY YOU FIX BUGS
AS SOON AS YOU FIND THEM10

