Supplementary Table 1 Phase 3 Studies of radiotherapy technique and fractionation | Study | No. | Risk groups | Trial design | ADT | Recruitmen
t period | Findings | |--|------|-------------------------------|--|------------|------------------------|--| | Trials of Conformal | RT a | nd dose-escalation | | 1 | | I | | Conformal RT ICR/RMH, London UK Dearnaley1999 | 225 | Int/high risk | Conventional vs
conformal RT
Dose 64Gy | 3-6m LHRHa | | Demonstrates Conformal RT reduces side effects Efficacy unchanged | | Dose Escalation
Trial Pilot Study
ICR/RMH, London
UK
Dearnaley 2005,
Creak 2013 | 126 | Int/high risk | Dose Escalation CFRT: Factorial design 1) 64Gy vs 74Gy 2)1.0cm vs 1.5cm margin | 3-6m LHRHa | 1995-7 | Suggests dose- escalation and CFRT improve PSA control 12% increase in PSA control with 74Gy Higher dose and 1.5cm margin more GU and GI side effects | | Medical Research
Council UK
RT01 Dose
Escalation Trial
Dearnaley
2007,2014 | 843 | Int risk 37%
High risk 43% | Dose Escalation
CFRT: 64Gy vs
74Gy | 3-6m LHRHa | 1998-2002 | Demonstrates dose-escalation and CFRT improve PSA control 12% increase in PSA control at 10 years 11% increase in GI side effects at 3 years Overall survival: no difference (11% PCa deaths) | | CKVO96-10
Netherlands
Peeters 2006
Heemsbergen 2014 | 664 | Int risk 27%
High risk 55% | Dose Escalation
CFRT: 68Gy vs
78Gy | LHRHa for 6
m in 21% | 1997-2003 | Demonstrates dose-escalation and CFRT improve PSA control 13% increase in PSA control at 10 years 5% increase in GI side effects at 5 years (p=0.2) Overall survival: no difference | |---|-----|--------------------------------------|---|-------------------------|-----------|--| | PROG 95-09 Loma Linda University Medical Center and Massachusetts General Hospital Zeitman 2010 | 393 | Int risk 37%
High risk 4% | Dose Escalation CFRT:50.4Gy 28f + Proton boost to 70.2GyE 39f vs 79.2GyE 44f | none | 1996-9 | (13%PCa deaths) 16% increase in PSA control at 10 years (p<0.0001) 9 % increase in Grade ≥2 GI side effects at 5 years (p=0.09), 4%% increase in GU side effect at 5 years (p=0.79) Overall survival: no difference (1.5% PCa deaths) | | MD Anderson
Cancer Centre
USA
Kuban 2008 | 301 | Int risk 46%
High risk 34% | Dose Escalation
CFRT: 70Gy vs
78 Gy | none | 1993-98 | Demonstrates dose-escalation and CFRT improve PSA control 19% increase in PSA control at 8 years 13 % increase in Grade ≥2 GI side effects at 10 years (p=0.013), 5%% increase in GU side effects at 10 years (p=NS) Overall survival: no difference (3%PCa deaths) | | GETUG 06 France | 306 | Int risk not stated
High risk 29% | Dose Escalation
CFRT: 70gy 35f
vs 80Gy 40f | none | 1999-2002 | Demonstrates
dose-escalation
and CFRT | | D 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | |---|-------|-------------------------------|---|---|-----------|--| | Beckendorf 2011 | | | | | | improve PSA control | | | | | | | | 8.5%% increase in PSA control at 5 years 5 % increase in GI side effects at 5 years (p=0.2), 7.5 % increase in GU side effects at 5 years (p=0.039) Overall survival: no difference | | | | | | | | (3.3%PCa deaths) | | RTOG 0126
USA
Michalski 2018 | 152 | Int Risk: 100% | Dose Escalation
CFRT: 70.2Gy
39f vs 79.2Gy
44f | none | 2002-2008 | Demonstrates dose-escalation and CFRT improve PSA control 15% decrease in PSA failure (35%vs 20% HR 0.054 p=0.001) At 5 yrs 6% increase in Grade≥2 GI HR1.39p=0.006, 5% increase in Grade≥2 GU HR1.59 p=0.003 DM: 4% vs 6% (NS) OS: 76% No difference at 8 years | | Trials of image-guid | ed R7 | 7 | I. | I. | | | | France De Crevoiser 2018 | 470 | Intermediate and
high risk | Image Guided
RT
Daily vs weekly
IGRT | ADT in 46%,
short or longer
course (non-
randomised) | 2007-12 | Tocicity: Late rectal ≥1 RTOG GI reduced with daily IGRT HR 0.71, p=0.027 BPFS improved with daily IGRT HR 0.45, p=0.007 but non-prostate cancer deaths increased with daily IGRT | | | | | | | HR2.21, p=0.026 (anomalous result) | |----------------------------|---|--|------------|-----------|--| | CHHiP IGRT
UK
Murray | T1b-T3a, N0,
Gleason score <8,
PSA<40 | IMRT no IGRT vs IMRT with | LHRHa 4-6m | 2010-2011 | Lower bladder and rectal DVH/DSH with IGRT(R) with lower GI and GU side effects No IGRTvs IGRT(S) vs IGRT | | , viui i ay | | IGRT with
standard (S) or
reduced margins
(R) | | | (R) RTOG ≥2 GI
8.3% vs 8.3% vs
5.8%, GU 8.4%vs
4.6% vs 3.9% | ## Trials of modest Hypofractionation | | | | | | | Demonstrates
non- inferiority of
modest HFRT
5/10yr BCF free:
74Gy
88.3%/76.0%,
60Gy
90.6%//79.8%,
57Gy | |------------------------|-----|---|---|------------|-----------|--| | UK
De:
Syi
Wi | 321 | T1b-T3a, N0,
Gleason score <8,
PSA<40 | Non-inferiority
design Moderate
HFRT
74Gy 37f vs
60Gy 20f vs
57Gy 19f
IMRT all cases,
IGRT | LHRHa 4-6m | 2002-2011 | 85.9%/73.3% HR ₆₀ P<0.001(non-inferiority) 10yr MFS: 74Gy 75.8%, 60Gy 80.0%, 57Gy 76.1% HR ₆₀ 0.85 P=0.05 10yr OS 74Gy 78.4%, 60Gy 83.0%, 57Gy 79.9% No differences. 15% deaths due to PCa 5yr Side effects ≥Grade 2: GI 74Gy 11.9%, 60Gy 10.9%, 57Gy 11.0%% No differences: GU 74Gy 8.1%, 60Gy 9.7%%, 57Gy | | PROFIT Canada Catton 2017 | 120 | Intermediate risk | Non-inferiority
design
Moderate HFRT
78Gy 39f vs
60Gy 20f
IMRT all cases | none | 2006-2011 | 7.0% HR _{60/57} 1.45 p=0.02 Demonstrates non-inferiority of modest HFRT 5yr BCF free survival: 78Gy 85%, 60Gy 85%. 60 Gy non-inferior. No difference in survival. 14 % deaths due to PCa Late side effects RTOG ≥2: GI 78Gy 13.9% vs 60Gy 8.9% P=0.006, GU 20.0% vs 22.5% p=NS No difference in | |--|-----|------------------------------|--|----------------------------|-----------|--| | HYPRO
Netherlands
Incrocci 2016,
Aluwini 2016 | 804 | High or
Intermediate risk | Superiority
design Dose escalated
Moderate HFRT 64.6Gy19f 6.5wk vs 78Gy 39f 8wk IMRT 95%, IGRT94% | ADT in 67%
(median 32m) | 2007-2010 | 5yr RFS:80.5% 64.6Gy vs 77.1% 78Gy, HR 0.86, p=0.36 . No difference in 5 yr OS 86% Increased RTOG ≥grade3 GU toxicity 19.0% 64.6Gy vs 12.9%78Gy p=0.021. No difference GI toxicity RTOG ≥grade2 GI toxicity 21.9% 64.6Gy vs 17.7%78Gy HR 1.19 | | NRG/RTOG-0415
USA
Lee 2024 | 109 | Low risk | Non-inferiority
design
Dose escalated
Moderate HFRT
70Gy 28f vs
73.8Gy 41f
IMRT 79% | none | 2006-2009 | 12yr DFS HR (H-RT/C-RT) is 0.85 ($P < .001$ for non-inferiority). 12yr BCF 17.0% for C-RT and 9.9% H-RT. HR 0.55, p<0.001 Late grade \geq 3 GI 3.2% (C-RT) versus 4.4% (H-RT), RR 1.39 . Late grade \geq 3 GU 3.4% (C-RT) | | | | | | | | versus 4.2% (H-
RT), RR 1.26 | |---|-------|---|---|------|--|--| | Trials of extreme hyp | pofra | ctionation and SBI | RT | 1 | 1 | | | | | | | | | Demonstrates
non- inferiority of
extreme HFRT | | | | | | | | 5yr FFS 84% in
both groups HR
1.002, p=0.99 | | HYPO-RT | | | Non-inferiority
design Extreme | none | 2005-2015 | Toxicity <i>at</i> 5 yr:
≥2 RTOG GI
42.7Gy vs 78Gy,
1% vs 5%, ≥2 | | Sweden | 120 | Intermediate risk
89% High risk | HFRT | | | RTOG GU toxicity 5% vs 5% | | Widmark 2019,
Fransson 2021 | | | IGRT
42.7Gy 7f vs
78Gy 39f | | | but increased GU
toxicity at 1 year
6% vs 2%
p=0.0037 | | | | | | | QoL:Acute GI scores worse with 42.7Gy Overall bother at 6 yrs 78 Gy vs 42.7Gy: GU 33% ve 28% p=0.38, Overall bother GI 33% vs 28% p=0.33 | | | PACE UK, Ireland, Canada van As 2024, Tree 2022 | 874 | Low risk 8.4%
Intermediate risk
91.6% | Extreme HFRT Non-inferiority SBRT 36.25Gy 5f 1-2wk vs 78Gy 39f 7.5wk or 62Gy 20f 4wk IGRT | none | 2012-2018 | Demonstrates non- inferiority of extreme HFRT 5-year FFBCF 95.8% SBRT vs 94.6%, HR 0.73, P=0.004 for noninferiority) Late Toxicity: Increased 1-2yr GU toxicity with SBRT, cumulative 5yr RTOG grade ≥2 GU 26.9% SBRT vs 18.3% control p<0.001, cumulative 5 yr RTOG grade ≥2 GI 10.7% SBRT vs 10.2% p=0.94 QoL EPIC at 5 yr no differences | | | | | | | | | | | | | | | | incontinence 96.9
vs 100 p=0.45,
bowel sub-domain
100vs 85.8 p=0.10
or sexual sub-
domain | |--|-----|--|--|---|-----------|--| | GETUG-01 France Pommier 2016 | 446 | T1b-T3 N0,
Stratified low risk
92
High risk 354 | Prostate only vs
prostate and
pelvis RT
CFRT Prostate
66-70Gy Pelvis
46 Gy | 6m ADT for
high-risk group
only | 1998-2004 | 10-year OS, P
alone vs P+pelvis:
74.9% vs 73.6%,
p=NS
10yr EFS, 57.6%
vs 55.6,
p=NS.Low risk
77.2%, vs
62.5% p=0.178).
Post hoc subgroup
analysis
significant benefit
of pelvic RT
without ADT for
LN <15% | | NRG/RTOG 9413
USA
Roche 2018 | 132 | LN risk >15% | 2 by 2 factorial design a)Prostate(POR T) CFRT 70Gy vs Prostate and pelvis (WPRT) 46Gy b) 4m neoadjuvant ADT (NHT) vs 4m post RT adjuvant ADT(AHT) | ADT 2m
before and
during
RT(NHT) vs
ADT for 4m
after
ADT(AHT) | 1995-1999 | 10 yr PFS 28·4% NHT plus WPRT vs 23·5% NHT plus PORT group vs 19·4% WPRT plus AHT vs 30·2% in the PORT plus AHT group. Toxicity: RTOG GU≥3: 6.5% WPRT vs 4.5% PORT, RTOG GI ≥3 WPRT 5% vs PORT 2% | | POP-RT Tata Memorial Mumbai Murthy 2021 | 224 | LN Risk ≥20%
50% NCCN Very
High Risk
PSMA PET in
80% | Single Centre
Phase 3 trial
Prostate only RT
(PORT) 68Gy
25f vs Prostate
and pelvis RT
(WPRT) 50Gy
25f
IMRT with
IGRT | 24m + ADT | 2011-2017 | Suggests benefit of pelvic RT in high-risk groups 5yr BFFS: WPRT 95.0% vs 81.2% PORT HR 0.23, p<0.0001 5yr DFS: WPRT 89.5% v PORT 77.2%; HR 0.40, p=0.002 | | Dearnaley
UK
PIVOTAL 2019 | 124 | | Randomised
phase 2 IMRT:
Prostate only
(74Gy) vs
Prostate + pelvis
(74Gy+60Gy) | 6-24m ADT | 2011-13 | WPRT 95.9% vs PORT 89.2%, HR 0.35, p=0.01 5yr OS 92.5% v 90.8%, HR 0.92; p= 0.83 Toxicity: Cumulative late RTOG≥2 WPRT vs PORT: GU 20.0% vs 8.9%p=0.02, GI 8.2% vs 4.5% p=0.28 No difference in acute or late toxicity using physician or patient reported outcomes | |--|-----|--|---|--------------------------------------|-----------|--| | FLAME Netherlands,Belgiu m Kerkmeijer 2021 | | Intermediate (15%) and high risk (84%) | Dominant lesion
boost Phase 3
Whole prostate
77Gy 35f
(2.2Gy/f) vs
whole prostate +
integrated boost
95Gy 35f
(2.7Gy/f) | ADT in 65%
6m-36m | 2009-2015 | Demonstrates improved PSA control with focal boost 5yr bDFS focal boost vs no boost 92% and 85% HR 0.45, p < .001. No difference in PCSS or OS Toxicity: cumulative incidence late GU and GI toxicity grade ≥ 2, 23% and 12% no boost vs 28% and 13% focal boost, p=NS | | Hypo-FLAME
Netherlands,
Belgium
Draulans 2024 | 100 | Intermediate (32%) and high risk (68%) | Dominant lesion
boost Phase 2
Whole prostate
35Gy 5f
(7.0Gy/f) 5wk +
integrated boost
50Gy 5f
(10.0Gy/f) | ADT in 62%
6m-36m | 2016-2024 | 5-year bDFS focal boost 93% Toxicity: 5yr prevalence late GU and GI toxicity grade ≥ 2, 12%and 14% | | DELINEATE | 265 | Three groups | Dominant lesion boost Phase 2 | ADT in 100% short course 95%/79%/15% | 2011-2020 | 5 yr FFBCF: a)
98.2% b) 96.7% c)
95.1% | | RMH UK Tree 2022 Trials of Post Prosta SWOG 8794 USA | <i>tector</i> | b)Intermediate/hig
h risk 46%/54%
c)High risk 100%
my radiotherapy | a)74Gy 37f + boost 82Gy 37f (2.2Gy/f) b)60Gy 20f + boost 67Gy 20f (3.35Gy/f) c) as a) with 60Gy 37f (1.62Gy/f) to pelvis Post - prostatectomy | or long course
6%/20%/85% | 1988-1997 | Toxicity: Cumulative 5yr late RTOG grade 2+ GI a) 12.8% b), 14.6% c) 20.7% Cumulative 5 yr RTOG grade 2+ GU a) 12.9 b) 18.2% c) 18.2% 10 yr MFS greater with RT 71%vs 61% HR 0.71, p=0.016). Survival improved | |---|---------------|---|--|------------------------------|-----------|---| | Thomson 2009 | TJ 1 | | RT 60-64Gy vs
observation | 1.071 | 1700-1771 | with RT 74% vs
66% HR 0.72,
p=0.023) | | EORTC 22991 European multicentre Bolla 2005 | 100 5 | pT3N0 +/- positive SM, pT2 | Post -
prostatectomy
RT 60Gy vs
observation | No ADT | 1992-2001 | 10yr BPFS improved with RT 60.6% vs 41.0% HR 0·49 p<0·0001). No difference in metastases 10.1% vs11% or 10yr OS 76.9% vs 80.7% Toxicity: Increased 10 year cumulative incidence with RT all grades 70·8% vs 59·7% p=0.001. | | ARO 96-02/AUO
AP 09/95
Germany
Wiegel 2009 | 388 | pT3N0 +/-positive
SM | Post -
prostatectomy
RT 60Gy vs
observation | No ADT | 1997-2004 | 10 yr PFS 56% for
RT and 35% for
observation
p < 0.000110yr
OS 86% vs 82%
p=NS | | Finn Prostate
Finland
Hackman 2019 | 250 | pT3a, pT2 SM
positive N0 | Post -
prostatectomy
RT 66.6Gy vs
observation | No ADT | 2004-2012 | 10yr BPFS 82% with RT vs 61% observation HR 0.26 p < 0.001. 10 yr OS 92% vs 87% HR 0.69, p = 0.4. Toxicity: 56% grade 3 with RT vs 40% observation p = 0.016 | | Medical Research
Council UK
RADICALS-RT
UK, Denmark,
Canada, Ireland
Parker 2024a | 139 | ≥1 risk factor
(pT3/4, Gleason
7-10, positive
margins,
preoperative
PSA≥10 ng/ml) | Post-
prostatectomy Adjuvant RT vs Salvage RT EBRT to prostate bed. 66Gy 33f or 52.5Gy 20f daily (non-randomised | Clinical preference or 2 nd randomisation 0m vs 6m vs 24m ADT (see Table3) | 2007-2016 | Demonstrates no advantage for adjuvant RT 10-year FFDM not improved 93% Adjuvant-RT vs 90% Salvage-RT: HR=0.68, p=0.095. OS not improved (HR=0.980, P=0.917). Adjuvant-RT worse urinary and faecal incontinence 1 year after randomisation (P=0.001); faecal incontinence significant after 10 years (P=0.017). | |--|-----|--|---|---|-----------|--| | TROG 08.03/ANZUP RAVES Australia, New Zealand Kneebone 2020 | 333 | pT3a/b or SM
positive | Post-
prostatectomy Adjuvant RT vs Salvage RT EBRT to prostate bed. 64Gy 32f | No ADT | 2009-2015 | 5-year BPFS 87%
SRT with ART vs
86% ART HR
1.12, p = 0.15
(non-inferiority)
Toxicity: grade
≥2 GI 10%SRT vs
14% | | GETUG-AFU 17
France
Sargos 2020 | 424 | pT3a/b, T4a,
pNx/0 | Post-
prostatectomy Adjuvant RT vs Salvage RT EBRT to prostate bed. 66Gy 33f +/- pelvic RT 46Gy 23f | ADT for 6 months | 2008-2016 | 5yr EFS 92% ART vs 90% SRT HR 0·81, p=0·42. 5yr OS 96% ART vs 99% SRT HR1.60 p=0.25 Toxicity: Late grade≥ 2 GI 8% ART vs 5% SRT; Late grade≥ 2 GU 27% ART vs 7% SRT p<0·0001. Late erectile dysfunction ≥Grad e 2 36% ART vs 13% SRT p<0·0001 | | ARTISTIC
International
Vale 2020 | 215 | As above | | see 3 trials above) | 2007-2016 | p<0.0001 39% had SRT No evidence that EFS was improved by ART 89% vs SRT 88% HR 0.95; p=0.70 | | | | | Meta-analysis | | | | |---|--------|----------------------------------|--|--------------------------------|---------------------------------|--| | | | | (see 3 trials | | | | | | | | above) | | | | | Trials of Prostatecto | ту ан | nd radical radiothe | rapy | | 1 | | | ProtecT
UK
Hamdy 2023
Donovan 2023 | 164 | Sceen detected
Low -High Risk | RT vs
prostatectomy
1)Active
monitoring
2)Radical
prostatectomy
3) Radical
Radiotherapy +
3-6m ADT | CFRT 74Gy
37f + 3-6m
ADT | 1999-2009 | Demonstrates similar control and survival for radical RT and prostatectomy 15yr F-U: No difference on deaths from PCa (2.7%) or OS 21.7% RP and RT no difference in development of metastases (4.6./5.0%), long-term ADT,7.2%/7.7% or clinical progression (10.5%/11.0%) AM had about double DM and additional ADT Urinary leakage RP24%vs RT 8% AM 11%; Faeccal leakage RP 6%, RT 12%, AM 6%; Erectile potency RP 18%, RT 27%, AM 30% | | PACE-A
UK
van AS 2024b | 123 | Low-Intermediate
risk (92%) | Prostatectomy | none | 2002-2012 | Toxicity (EPIC):
2yr pad use 50%
prostatectomy vs
6.5% SBRT
p<0.001, bowel
domain 100 vs
87.5 p<0.001,
sexual scores 18
vs 62.6 | | Trials of prostate rad | diothe | grapy in metastatic | | | | | | HORRAD
Netherlands
Boeve 2021 | 432 | Bone metastases | Prostate RT in
M1
ADT vs ADT
and prostate RT | Long term
ADT | EBRT to
prostate
72Gy 36f | No difference in
overall survival
but prolonged
time to PSA
progression (HR
0.78 p=0.02) | | | | | | | | | | STAMPEDE
UK, Switzerland
Parker 2018,2022 | 206 | Bone metastases 40% low metastatic burden | Prostate RT in
M1
SOC vs SOC +
prostate RT | Long term
ADT
(Docetaxel in
18%) | EBRT to
prostate
55Gy 20f or
36Gy 6f | OS all patients: overall no difference OS benefit in low burden disease: | |---|-----|--|--|---|---|---| | STOPCAP
Metanalysis
Burdett 2019 | 212 | Bone metastases | Prostate RT in M1 Metanalysis STAMPEDE and HORRAD SOC vs SOC + prostate RT | Log term ADT
+/- docetaxel | EBRT to prostate | HR 0.65, p0.010 Demonstrates improved survival with prostate RT in low metastatic volume No overall survival benefit FFS HR 0.76 p=0.9*10 ⁻⁸ Low metastatic burden (<5mets) OS benefit HR 1.47, p=0.007. 7% improvement at 3 yrs | | PEACE 1
France, Belgium
Ireland, Italy,
Romania, Spain,
Switzerland
Bossi 2024 | 117 | Bone metastases Low metastatic burden 43% | Prostate RT in M1 2*2 factorial | 1)SOC: ADT
alone/docetaxel
2)SOC+
abiraterone
3)SOC +
prostate RT
4)SOC+abi.+R
T | 74Gy 37f to prostate | RT +SoC
+abiraterone
improves RPFS
HR 0.65 p=0.019
in low volume
met.disease. No
advantage in
group treated
without
abiraterone. Time to CRPC
increased by RT +
abiraterone in low
metastatic burden
(HR
0.62,p=0.0056)
and overall
population (HR
0.79, p=0.028) No benefit on OS | | | | RT reduces | |--|--|--------------------| | | | genitourinary side | | | | effects | Supplementary Table 1, Abbreviations: ADT androgen deprivation treatment; AM active monitoring; ART adjuvant radiotherapy; AHT adjuvant hormone therapy BCF biochemical and clinical failure; bDFS biochemical disease free survival; BPFS biochemical and progression free survival; CFRT conformal radiotherapy; CRPC castration resistant prostate cancer; DFS disease free survival; DM distant metastases; DSH dose surface histogram; DVH dose volume histogram; EBRT external beam radiotherapy; EFS event free survival; EPIC Expanded Prostate Cancer Index Composite; fractions; FFBCF freedom from biochemical or clinical failure; FFS failure free survival; F-U follow up; GI gastrointestinal; GU genitourinary; Gy Gray; GyE Gray equivalent; HFRT hypofractionated radiotherapy; HR hazard ratio; ICR The Institute if Cancer Research, London; IGRT image guided radiotherapy; IMRT intensity modulated radiotherapy; LHRHa luteinising hormone releasing hormone analogue; LN lymph node; MFS metastases free survival; MRC Medical Research Council, London UK; NHT neoadjuvant hormone therapy; NS non-significant; OS overall survival; PCa prostate cancer; PORT prostate only radiotherapy; PSA prostate specific antigen; RP radical prostatectomy; RFS recurrence free survival; RMH Royal Marsden NHS Foundation Trust, London; RT radiotherapy; RTOG Radiotherapy and Oncology Group; QoL quality of life; SBRT stereotactic body radiotherapy; SM surgical margin; SOC standard of care; SRT salvage radiotherapy; WPRT whole pelvis radiotherapy