

Training Manual

Trainer: Deirdre Geary

Introduction to Data Engineering

Data Engineering

Re-skill Program

1 | P a g e

Notice of Rights

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system,

or translated into any language or computer language, in any form or by any means, electronic,

mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission

of Neueda Technologies Ltd.

Neueda © 2015

2 | P a g e

Table of Contents

PART I – DATA SCIENCE ... 11

Lesson 1.1: What is data science? .. 11

Lesson 1.2: What is role of data scientist? .. 12

Lesson 1.3: What is the Team Data Science Process? ... 13

PART II – DATA MODELING ... 15

Section 1: Data Modeling Fundamentals .. 16

Lesson 1.1: What is data modeling? .. 17

Lesson 1.2: Why model data? .. 17

Lesson 1.3: A brief overview of different types of models .. 18

Lesson 1.5: Conceptual Data Models ... 19

Lesson 1.6: Logical Data Models. .. 20

Lesson 1.7: Physical Data Models .. 22

Lesson 1.7: Comparison of CDM, LDM and PDM .. 24

Lesson 1.10: Comparing the syntax of the data modeling notations ... 25

Section 2: How to model data .. 26

Lesson 2.2: What are entities? ... 28

Lesson 2.5: What are attributes? ... 29

Class Exercise: Identify Entities and Attributes ... 30

Lesson 2.7: Relationships: Some Examples ... 32

Class Exercise: Define Business Rules ... 33

Lesson 2.8: Overview of Relationship Types ... 34

Lesson 2.9: Many-to-One and One-to-Many Relationships ... 35

Lesson 2.10: Many-to-Many Relationships ... 36

Lesson 2.11: One-to-One Relationships ... 37

Lesson 2.12: Recursive Relationships .. 38

Lesson 2.16: Determining the Relationship’s Cardinality ... 39

Lesson 2.18: Assigning keys - Unique Identifiers ... 42

3 | P a g e

Lesson 2.20: Identifying Relationships .. 43

Lesson 2.21: Identifying Relationships with Multiple Entities ... 44

Lesson 2.23: Primary and Secondary Unique Identifiers... 45

Lesson 2.25: Normalization .. 46

Lesson 2.26: First Normal Form (1NF) ... 48

Lesson 2.27: Second Normal Form (2NF) ... 50

Lesson 2.28: Third Normal Form (3NF) ... 51

Class Exercise: Taking unnormalised data and converting it into 3NF .. 52

Section 3: Denormalization ... 53

Lesson 3.1: What Is Denormalization? ... 54

Lesson 3.2: Storing Derivable Values .. 55

Lesson 3.3: Pre-Joining Tables .. 56

Lesson 3.4: Hard-Coded Values ... 57

Lesson 3.5: Keeping Details with the Master Table .. 58

Lesson 3.6: Repeating Current Detail with the Master Table ... 59

Lesson 3.7: Adding an END_DATE Column .. 61

Lesson 3.8: Adding a CURRENT_ROW_INDICATOR Column ... 62

Lesson 3.10: Short Circuit Keys .. 63

Lesson 3.11: Denormalize verses Normalization ... 64

Section 4: Data warehousing concepts ... 65

Lesson 4.1: What Is a Data Warehouse? ... 66

Lesson 4.2: Components of a Data Warehouse .. 67

Lesson 4.3: The Dimensional Model .. 69

Lesson 4.4: The Data Warehouse Design Process ... 71

Lesson 4.5: Designing Dimension Tables ... 73

Lesson 4.6: Designing Slowly Changing Dimensions .. 76

Lesson 4.7: Designing Fact Tables .. 77

Section 5: Fundamentals of SQL Developer Data Modeler and PowerDesigner Viewer 80

4 | P a g e

Lesson 5.1: Introduction to PowerDesigner Viewer ... 81

Lesson 5.1: Create a new Design using SQL Developer Data Modeler ... 82

Lesson 5.3: Create a logical data model using SQL Developer Data Modeler 83

Lesson 5.4: Create a physical data model from the logical data model using SQL Developer Data Modeler

 .. 88

Lesson 5.5: Generate the DDL using SQL Developer Data Modeler .. 91

Lesson 5.6: Reverse engineer from a database schema using SQL Developer Data Modeler 96

Lesson 5.6: Create a multidimensional model using SQL Developer Data Modeller 103

Part III – Relational Databases using Oracle .. 106

Section 1: Development Tools ... 107

Lesson 1.1: Overview SQL Developer .. 108

Lesson 1.2 Writing queries SQL Developer ... 118

Section 2: Introduction to Oracle database .. 124

Lesson 2.1: Discuss the basic design, theoretical, and physical aspects of a relational database 125

Lesson 2.2: Overview to Oracle Architecture .. 131

Section 3: Retrieve Data using the SQL SELECT Statement .. 135

Lesson 3.1: Capabilities of SELECT Statement .. 136

Lesson 3.2: Basic SELECT statements ... 138

Lesson 3.3: SELECT all columns ... 140

Lesson 3.4: Column Aliases ... 141

Lesson 3.5: Retrieving Distinct Values ... 142

Lesson 3.6: Literal Strings ... 143

Lesson 3.7: Introduction to SQL Operators .. 144

Lesson 3.8: DESCRIBE statement .. 149

Lesson 3.9: Oracle Data Dictionary .. 150

Section 4: Restrict and Sort Data .. 151

Lesson 4.1 : WHERE clause .. 152

Lesson 4.2 : Comparison operators and logical operators ... 153

Lesson 4.3 : Rules of precedence for comparison and logical operators 168

5 | P a g e

Lesson 4.4 : Character string literals ... 171

Lesson 4.5 : Date queries ... 172

Lesson 4.6 : Use of functions in the WHERE clause and performance considerations 174

Lesson 4.7 : ORDER BY clause .. 175

Lesson 4.8: Substitution Variables ... 178

Section 5: Single-Row Functions .. 181

Lesson 5.1: Single row and multiple row functions ... 182

Lesson 5.2: Usage of functions in the SELECT and WHERE clauses .. 183

Lesson 5.3: Manipulate strings with character functions ... 184

Lesson 5.4: Manipulate numbers with the numeric functions ... 186

Lesson 5.5: Manipulate dates with the date functions .. 187

Section 6: Invoke Conversion Functions and Conditional Expressions ... 188

Lesson 6.1: Describe implicit and explicit data type conversion .. 189

Lesson 6.2: Conversion functions ... 190

Lesson 6.3: Nest multiple functions .. 196

Lesson 6.4: Apply the DECODE, NVL, NULLIF, and COALESCE functions to data 197

Lesson 6.5: Use conditional CASE statement .. 201

Section 7: Aggregate Data Using the Group Functions .. 203

Lesson 7.1: Aggregation functions .. 203

Lesson 7.2: GROUP BY clause ... 206

Lesson 7.3:HAVING clause ... 209

Lesson 7.4:Introduction of Analytical Functions .. 210

Section 8: Display Data from Multiple Tables Using Joins ... 214

Lesson 8.1: Overview of joins .. 215

Lesson 8.2: Write SELECT statements to access data from more than one table 216

Lesson 8.2: Inner Joins .. 217

Lesson 8.3: Outer Joins.. 218

Lesson 8.4: Natural Joins .. 222

6 | P a g e

Lesson 8.5: Cross Joins .. 225

Lesson 8.6: Join a table to itself by using a self join .. 226

Lesson 8.7: Joining multiple tables ... 227

Section 9: Use Sub-queries to Solve Queries .. 229

Lesson 9.1: Overview of sub-queries .. 230

Lesson 9.2: Define sub-queries .. 230

Lesson 9.3: List the types of sub-queries .. 231

Lesson 9.4: Write single-row and multiple-row sub-queries .. 231

Lesson 9.5: Correlated Sub queries .. 234

Section 10: The SET Operators .. 235

Lesson 10.1: Describe the SET operators – UNION, INTERSECT, MINUS 236

Lesson 10.2: Use a SET operator to combine multiple queries into a single query 237

Lesson 10.3: Control the order of rows returned .. 240

Section 11: Data Manipulation Statements and ETL .. 241

Lesson 11.1: Describe each DML statement .. 242

Lesson 11.2: Insert rows into a table .. 243

Lesson 11.3: Change rows in a table by the UPDATE statement .. 249

Lesson 11.4: Delete rows from a table with the DELETE statement .. 252

Lesson 11.5: Save and discard changes with the COMMIT and ROLLBACK statements 254

Lesson 11.6: ETL .. 256

Section 12: Introduction to PL/SQL ... 258

Lesson 12.1: Overview of PL/SQL .. 259

Lesson 12.2: Identify the benefits of PL/SQL Subprograms .. 261

Lesson 12.3: Overview of the types of PL/SQL blocks ... 263

Lesson 12.5: How to generate output from a PL/SQL Block? ... 267

Section 13: Declare PL/SQL Identifiers ... 269

Lesson 13.1: Types of Identifiers in a PL/SQL subprogram .. 270

Lesson 13.2: Usage of the Declarative Section to Define Identifiers .. 272

Lesson 13.3: Use variables to store data ... 273

7 | P a g e

Lesson 13.4: Identify Scalar Data Types .. 276

Lesson 13.5: The %TYPE Attribute .. 282

Lesson 13.6: Bind Variables .. 283

Lesson 13.7: Sequences in PL/SQL Expressions ... 284

Section 14: Write Executable Statements ... 285

Lesson 14.1: Describe Basic PL/SQL Block Syntax Guidelines ... 286

Lesson 14.2: Learn to Comment the Code ... 287

Lesson 14.3: Use of SQL Functions in PL/SQL ... 288

Lesson 14.4: How to convert Data Types ... 289

Lesson 14.5: Describe Nested Blocks .. 291

Lesson 14.6: Identify the Operators in PL/SQL .. 296

Section 15: Interaction with the Oracle Server .. 299

Lesson 15.1: Invoke SELECT Statements in PL/SQL .. 299

Lesson 15.2: Retrieve Data in PL/SQL... 300

Lesson 15.3: SQL Cursor concept .. 302

Lesson 15.4: Data Manipulation in the Server using PL/SQL ... 304

Section 16: Control Structures .. 307

Lesson 16.1: Conditional processing using IF Statements .. 308

Lesson 16.2: Conditional processing using CASE Statements ... 310

Lesson 16.3: Describe simple Loop Statement ... 312

Lesson 16.4: Describe While Loop Statement ... 314

Lesson 16.5: Describe For Loop Statement ... 316

Lesson 16.6: Use the Continue Statement .. 318

Section 17: Composite Data Types .. 320

Lesson 17.1: Use PL/SQL Records ... 321

Lesson 17.2: Insert and Update with PL/SQL Records .. 324

Lesson 17.3: INDEX BY Tables .. 326

Lesson 17.5: Examine INDEX BY Table Methods .. 330

8 | P a g e

Lesson 17.6: Use INDEX BY Table of Records ... 331

Section 18: Explicit Cursors .. 334

Lesson 18.1: What are Explicit Cursors?... 335

Lesson 18.2: Declare the Cursor ... 337

Lesson 18.3: Open the Cursor ... 338

Lesson 18.4: Fetch data from the Cursor ... 338

Lesson 18.5: Close the Cursor ... 339

Lesson 18.6: Cursor FOR loop .. 341

Lesson 18.7: The %NOTFOUND and %ROWCOUNT Attributes .. 343

Lesson 18.8: Describe the FOR UPDATE Clause and WHERE CURRENT Clause 344

Section 19: Exception Handling ... 346

Lesson 19.1: Understand Exceptions .. 347

Lesson 19.2: Handle Exceptions with PL/SQL .. 348

Lesson 19.3: Trap Predefined Oracle Server Errors .. 350

Lesson 19.4: Trap Non-Predefined Oracle Server Errors .. 354

Lesson 19.5: Trap User-Defined Exceptions .. 356

Lesson 19.6: Propagate Exceptions .. 359

Lesson 19.7: RAISE_APPLICATION_ERROR Procedure .. 360

Section 20: Stored Procedures and functions ... 362

Lesson 20.1: Create a Modularized and Layered Subprogram Design .. 363

Lesson 20.2: Understand the PL/SQL Execution Environment .. 364

Lesson 20.3: List the benefits of using PL/SQL Subprograms... 365

Lesson 20.4: List the differences between Anonymous Blocks and Subprograms 366

Lesson 20.5: Create a Stored Procedures ... 367

Lesson 20.6: Building and calling a stored procedure .. 370

Lesson 20.7: Create a function .. 372

Lesson 20.8: Building and calling a function ... 374

Lesson 20.9: Implement Subprogram Parameters and Parameters Modes 376

9 | P a g e

Lesson 20.10: How to debug Functions and Procedures? .. 384

Section 21: Packages ... 387

Lesson 21.1: Package Specifications and body .. 388

Lesson 21.2: Advantages of Packages ... 392

Lesson 21.3: Creating Packages .. 393

Lesson 21.4: Scope of Packaged Items ... 396

Lesson 21.5: Overloading in Packages ... 398

Lesson 21.6: Oracle Packages ... 400

Lesson 21.7: WhiteLists ... 402

Lesson 21.8: Invoker and Definer rights .. 405

Section 22: REF Cursors .. 407

Lesson 22:1 Overview of REF Cursors .. 407

Lesson 22.2:Strong and weak cursors .. 408

Lesson 22.3:Creating REF Cursors .. 410

Section 23: Introduction to SQL Tuning .. 413

Lesson 23.1: Overview of SQL Statement execution .. 414

Lesson 23.2: Execution Plans .. 418

Lesson 23.3: Access Paths .. 425

Lesson 23.4: Join methods ... 427

Lesson 23.5: Join Types ... 428

Lesson 23.6: Join Order ... 429

Lesson 23.7: Autotrace... 430

Lesson 23.8: Overview of Hints ... 433

Section 24: Unit Testing .. 436

Lesson 24:1 What is Unit Testing ... 436

Lesson 24:2 Tools for building Unit Tests .. 438

Lesson 23:3 Building Unit Tests .. 441

Lesson 23:4 Startup and Teardown Processes .. 445

10 | P a g e

Lesson 23:5 Assertion Tests ... 447

Lesson 24:6 Running Test ... 448

Lesson 24:7 Test driven development... 449

Appendix ... 459

11 | P a g e

PART I – DATA SCIENCE

Lesson 1.1: What is data science?

Data Science is the ability to take data, to be able to understand it, to process it, to extract value from

it, to visualize it and to communicate it. Effective data scientists are able to identify relevant questions,

collect data from a multitude of different data sources, organize the information, translate results into

solutions, and communicate their findings in a way that positively affects business decisions.

Data Science Processes

1. Capture, (data acquisition, data entry, signal reception, data extraction);
2. Maintain (data warehousing, data cleansing, data staging, data processing, data architecture);
3. Process (data mining, clustering/classification, data modeling, data summarization);
4. Analyze (exploratory/confirmatory, predictive analysis, regression, text mining, qualitative analysis);
5. Communicate (data reporting, data visualization, business intelligence, decision making).

12 | P a g e

Lesson 1.2: What is role of data scientist?

The role of a data scientist is to turn raw data into actionable insights. Much of the world's raw data–

from electronic medical records to customer transaction histories–lives in organized collections of tables

called relational databases. Therefore, to be an effective data scientist, you must know how to wrangle

and extract data from these databases using SQL. Data scientists examine which questions need

answering and where to find the related data. They have business acumen and analytical skills as well

as the ability to mine, clean, and present data. Businesses use data scientists to source, manage, and

analyze large amounts of unstructured data. Results are then synthesized and communicated to key

stakeholders to drive strategic decision-making in the organization.

Skills needed: Programming skills (R, Python), statistical and mathematical skills, storytelling and data
visualization, Hadoop, SQL, machine learning.

13 | P a g e

Lesson 1.3: What is the Team Data Science Process?

The Team Data Science Process (TDSP) is an agile, iterative data science methodology to deliver

predictive analytics solutions and intelligent applications efficiently. TDSP helps improve team

collaboration and learning. It contains a distillation of the best practices and structures from Microsoft

and others in the industry that facilitate the successful implementation of data science initiatives.

Data science lifecycle

The Team Data Science Process (TDSP) provides a lifecycle to structure the development of your data

science projects. The lifecycle outlines the steps, from start to finish, that projects usually follow when

they are executed.

If you are using another data science lifecycle, such as CRISP-DM, KDD or your organization's own

custom process, you can still use the task-based TDSP in the context of those development lifecycles. At

a high level, these different methodologies have much in common.

This lifecycle has been designed for data science projects that ship as part of intelligent applications.

These applications deploy machine learning or artificial intelligence models for predictive analytics.

Exploratory data science projects or ad hoc analytics projects can also benefit from using this process.

But in such cases, some of the steps described may not be needed.

The lifecycle outlines the major stages that projects typically execute, often iteratively:

 Business Understanding

 Data Acquisition and Understanding

 Modeling

 Deployment

 Customer Acceptance

https://wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
https://wikipedia.org/wiki/Data_mining#Process

14 | P a g e

15 | P a g e

PART II – DATA MODELING

16 | P a g e

Section 1: Data Modeling Fundamentals

In this section you will cover the following topics:

 What is data modeling?

 Why model data?

 How are data models used in practice?

 A brief overview of different types of models

 Conceptual Data Models

 Logical Data Models

 Physical Data Models

 Comparison of CDM, LDM and PDM

 Overview of four common data modelling notations

 Comparing the syntax of the data modeling notations

17 | P a g e

Lesson 1.1: What is data modeling?

Data modelling is the analysis of data objects and their relationships to other data objects. It is often the

first step in database design and object-oriented programming as the designers first create a conceptual

model of how data items relate to each other. Data modeling involves a progression from conceptual

model to logical model to physical schema.

Lesson 1.2: Why model data?

The concept of data modeling can be better understood if we compare the development cycle of a data
model to the construction of a house. For example, a couple are planning to build a house (database)
and call the architect (data modeler) and talk through their building requirements (business
requirements). The architect (data modeler) develops the plans (data model) and gives it to couple.
Once the plans have been agreed, the couple calls the builders (DBA) to build the house (database).

Why does the architect develop plans for a new house? Probably for the same reason that the data

modeller does for a business’s data requirements. Pictures help people understand concepts and ideas.

They help us visualize what things look like before they are completed.

Models facilitate communication between systems people and end users so that both parties can

validate and confirm what the requirements are. A model is easy to change because it is just a picture

rather than a fully developed system that has taken a long time to develop. Mistakes are costly, and if

communication discrepancies and ideas can be fully defined in advance, the possibility of potential

error later in the project can be minimized. Models empower and provide end users with a sense of

ownership because a picture is something tangible and can be used as documentation throughout the

project. Often, end users do not know what the requirements are until they can see it on paper. Getting

your users involved early in the project and engaged in the building and validation of the model will

increase the quality and adoption of the system after it is built.

The aim of a data model is to make sure that all data objects provided by the data modeller are
completely and accurately represented. The data model needs to be detailed enough to be used by the
DBA to build the physical database. The information contained in the model will be used to define the
significance of business, relational tables, primary and foreign keys, stored procedures, and triggers so
the data model can be used to facilitate communication within the business.

18 | P a g e

Lesson 1.3: A brief overview of different types of models

As mentioned, you are likely to see three basic styles of data model:

Conceptual: describes WHAT the system contains - This data model includes all major entities,

relationships and will not contain much detail

about the attributes and is often used in the initial planning phase.

Logical: describes HOW the system will be implemented regardless of the DBMS you will use - This is

the actual implementation and extension of a conceptual data model into a logical data model. A logical

data model is the version of the model that represents the business requirements of an organization.

Physical: describe HOW the system will be implemented using a specific DBMS – in our case an Oracle

11g database. - This is a complete model that includes all required tables, columns, relationship,

database properties for the physical implementation of the database

We can see that the complexity increases from conceptual to logical to physical. This is why we always
first start with the conceptual data model (so we understand at high level what are the different entities
in our data and how they relate to one another), then move on to the logical data model (so we
understand the details of our data without worrying about how they will actually implemented), and
finally the physical data model (so we know exactly how to implement our data model in the database
of choice).

It is worth noting that there are also other modelling styles. For example, some modelling tools, such as

SQL Developer Data Modeler also introduce a relational model. It is an intermediate model between the

logical model and the physical model. It supports relational design decisions independent of the

constraints of the target physical platform.

19 | P a g e

Lesson 1.5: Conceptual Data Models

A conceptual data model identifies the highest-level relationships between the different entities.

Features of conceptual data model:

 Includes the important entities and the relationships among them.

 No attribute is specified.

 No primary key is specified.

So why create a Conceptual Model? Well the most important reason is that a conceptual model facilitates

the discussion on the shape of the future system. It helps communication between the data modeller

and their client as well as between them and their colleagues. A model also forms a basis for the default

design of the physical database, and it is relatively cheap to make and very cheap to change. Last but not

least, it forms an important part of your ‘ideal system’ documentation.

Conceptual modeling is similar to the work of an architect—transforming things that only exist in

people’s minds into a design that is sufficiently substantial to eventually be created physically.

20 | P a g e

Lesson 1.6: Logical Data Models

A logical data model describes the data in as much detail as possible, disregarding how they will be

physical implemented in the database. Features of a logical data model:

 Includes all entities and relationships among them.

 All attributes for each entity are specified.

 The primary key for each entity is specified.

 Foreign keys (keys identifying the relationship between different entities) are specified.

 Normalization occurs at this level.

The basic steps for designing the logical data model are as follows:

 Specify primary keys for all entities.

 Find the relationships between different entities.

 Find all attributes for each entity.

 Resolve many-to-many relationships.

 Normalization.

21 | P a g e

The Logical Data model is independent of the hardware or software to be used for implementation and

is typically developed by data architects or analysts. The diagram that is used to build the Logical Data

model is called the Entity Relationship Diagram (ERD). The basic components of an ERD include:

1. Entities: Things of significance about which information must be held

2. Relationships: How the things of significance are related

3. Attributes: Specific information that must be held

22 | P a g e

Lesson 1.7: Physical Data Models

Physical data model represents how the model will be built in the database. A physical database model

shows all table structures, including column name, column data type, column constraints, primary key,

foreign key, and relationships between tables. Features of a physical data model include:

 Specification all tables and columns.

 Foreign keys are used to identify relationships between tables.

 Denormalization may occur based on user requirements.

 Physical considerations may cause the physical data model to be quite different from the

logical data model.

 Physical data model will be different for different RDBMS. For example, data type for a

column may be different between MySQL and SQL Server.

The steps for physical data model design are as follows:

 Convert entities into tables.

 Convert relationships into foreign keys.

 Convert attributes into columns.

 Modify the physical data model based on physical constraints / requirements.

23 | P a g e

24 | P a g e

Lesson 1.7: Comparison of CDM, LDM and PDM

The three levels of data modeling, conceptual data model, logical data model, and physical data model,

were discussed in prior sections. Here we compare these three types of data models. The table below

compares the different features:

Feature Conceptual Logical Physical

Entity Names ✓ ✓

Entity Relationships ✓ ✓

Attributes ✓

Primary Keys ✓ ✓

Foreign Keys ✓ ✓

Table Names ✓

Column Names ✓

Column Data Types ✓

Although LDMs and PDMs sound very similar, and they in fact are, the level of detail that they model can

be significantly different. This is because the aims for each diagram is different – you use an LDM to

explore domain concepts with your stakeholders and the PDM to define your database design.

25 | P a g e

Lesson 1.10: Comparing the syntax of the data modeling notations

The following diagram shows a summary of the syntax of four data modeling notations: Information

Engineering (IE), Barker, IDEF1X, and the Unified Modeling Language (UML). For more information see

David Hay’s paper ‘A Comparison of Data Modeling Techniques’

(http://www.essentialstrategies.com/publications/modeling/compare.htm).

http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.essentialstrategies.com/publications/modeling/compare.htm
http://www.essentialstrategies.com/publications/modeling/compare.htm)

26 | P a g e

Section 2: How to model data

In this section you will cover the following topics:

 Introduction to the main players: Entities, Attributes and Relationships

 Components of a Relationship

 Many-to-One and One-to-Many Relationships

 Many-to-Many Relationships

 One-to-One Relationships

 Recursive Relationships

 Naming the Relationship

 Determining the Relationship’s Cardinality

 Examples of Unique Identifiers

 Identifying Relationships

 Identifying Relationships with Multiple Entities

 Non-Identifying Relationship

 Primary and Secondary Unique Identifiers

 Searching for Unique Identifiers

 Normalize to reduce data redundancy overview

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)

 Apply naming conventions

27 | P a g e

Lesson 2.1: Introduction to the main players: Entities, Attributes and

Relationships

The goal of a logical data model is to develop an entity relationship diagram that represents the

information requirements of the business. Logical data modeling is independent of the hardware or

software to be used for the implementation. A logical data model includes both graphic and textual

components. On the surface of the model, you can view the relationships among the data. In the textual

descriptions, you can understand the definitions behind the data and the details of the relationships

among the objects.

Using an entity relationship diagram to convey the information requirements is a useful communication

mechanism. Users can easily understand and change the model as it is developed. It is better to spend

time in advance to validate the business rules before making implementation decisions.

An entity relationship diagram has three main components:

 Entity: An object or concept about which you want to store information

 Attributes: Descriptions of entities and specific pieces of information that

 must be known

 Relationship: A natural association that exists between two or more entities

28 | P a g e

Lesson 2.2: What are entities?

An entity is something of interest. Entities are categories of things that are important for a business and

about which information must be kept. Entities contain facts and information that the business must

know and remember. Some examples of entities might include the following:

• Person: e.g. employee, customer

• Place: e.g. state, country, municipality

• Thing: e.g. inventory item, vehicle, product

• Concept: e.g. policy, risk, coverage, job

• Organization: e.g. agency, department

• Event: e.g. service request, claim, election

Entity characteristics include the following:

• Is represented by a rectangular box

• Has a unique name, usually in noun form

• Has name in uppercase, with no hyphens or underscores

Ideally an entity should be normal, the data modeling world’s version of cohesive. A normal entity depicts

one concept, just like a cohesive class models one concept. For example, customer and order are clearly

two different concepts; therefore, it makes sense to model them as separate entities.

The following questions can help determine whether or not a valid entity has been discovered:

 Does the entity have business significance to this Business Area?

 Does the entity have characteristics that this Business Area needs to use?

 Should each occurrence of the entity be uniquely identified?

 Does the entity have any relationship to another entity?

If the answer to each of the 4 questions is ‘Yes,’ then a valid entity has been discovered.

http://www.agiledata.org/essays/dataModeling101.html#Normalize

29 | P a g e

Lesson 2.5: What are attributes?

Attributes are information about an entity that must be known or held. Attributes describe an entity by
qualifying, identifying, classifying, quantifying, or expressing the state of the entity. Attributes represent
a type of description or detail, not an instance. Attribute names are singular and are represented within
the entity box.

Attributes have the following characteristics:

• Attributes are displayed within the entity box on the ERD.

• Attribute names should be singular and in mixed case or lowercase.

• Attributes are qualified with name of the entity. Therefore, the attribute name should not

include the name of the entity. For example, rather than employee_phone_number, use

phone_number.

• Attributes are classified as one of the following:

• Not null: Indicated by the asterisk * symbol next to the attribute

• Optional (nulls allowed): Indicated by the o (optional) symbol next to the attribute

The following questions can help determine whether or not an attribute of an entity has been

discovered:

 Does it describe the entity further?

 Does it have significance to this Business Area?

 Does it represent an atomic piece of data?

 Does it apply only to this particular entity?

If the answer to each of the 4 questions is ‘Yes,’ then a valid attribute has been discovered for an entity.

30 | P a g e

Class Exercise: Identify Entities and Attributes

In this practice, you identify and model the entities from the following requirements.

The Training Manager in CoursesRUs wants to model the entity and attributes for a set of requirements.

The entity and attributes must store the following:

• Course information (including its title, duration, and fee)

• Information about an instructor (such as name, phone number, and address)

• Information about each student (such as name, phone number, and address)

• Information about what courses a student took

• Information about what courses an instructor taught

• Training location information (such as name, location, and phone number)

31 | P a g e

Lesson 2.6: Components of a Relationship

A relationship represents the business rules that link entities. There are always two business rules for

each relationship. For example :

• A DEPARTMENT may contain one or many EMPLOYEEs.

• An EMPLOYEE must be assigned to one and only one DEPARTMENT.

Each direction of a relationship has:

• A name (for example, ‘contain one’ or ‘assigned to’)

• An optionality (for example, either ‘must be’ or ‘may be’)

• A degree (for example, either ‘one and only one’ or ‘one or more’)

The components of the relationship include the following:

• Name: The label that appears close to the entity it is assigned to. Make sure that all

relationship names are in lower case (examples: ‘assigned to’’ or ‘responsible for’).

• Cardinality: The minimum and maximum number of values in the relationship

• Minimum values can be either optional (zero) or mandatory (at least one).

• Maximum values can be either one or many.

When reading the business rule sentence, use the following words for the minimum values:

• Optional: Use ‘may be’ or ‘may.’

• Mandatory: Use ‘must be’ or must.’

When reading the business rule sentence, use the following words for the maximum values:

• Line: Use ‘one and only one.

• Crow’s feet: Use ‘one or more.’

32 | P a g e

Lesson 2.7: Relationships: Some Examples

In order to establish the business rules for each relationship, first read a relationship in one direction and

then read the relationship in the other direction.

In the above examples note the following:

Between STUDENT and COURSE, the business rules are:

• A COURSE may be taken by one or more STUDENTs.

• A STUDENT may be enrolled in one or more COURSEs.

Between CUSTOMER and ORDER, the business rules are:

• A CUSTOMER may place one or more ORDERs.

• An ORDER must be placed by one and only one CUSTOMER.

Between EMPLOYEE and DEPENDENT, the business rules are:

• An EMPLOYEE may have one-to-many DEPENDENTs.

• A DEPENDENT may be associated with one and only one EMPLOYEE.

33 | P a g e

Class Exercise: Define Business Rules

In this practice, write the business rule sentences for the following ERD:

34 | P a g e

Lesson 2.8: Overview of Relationship Types

There are three types of relationships:

• Many-to-one (M:1) or one-to-many (1:M): There are crow’s feet on one side of the

relationship. The direction of the crow’s feet determines whether the relationship is M:1 or

1:M. This type of relationship is the most common.

• Many-to-many (M:M): There are crow’s feet on both sides of this relationship. It is common

to see M:M relationships in a high level ERD at the beginning of a project.

• One-to-one (1:1): This type of relationship is a line without crow's feet on either end. These

types of relationships are rare.

In Oracle SQL Developer Data Modeler, the notation is slightly different:

• One-to-many is 1:N.

• Many-to-many is M:N.

35 | P a g e

Lesson 2.9: Many-to-One and One-to-Many Relationships

Many-to-one and one-to-many relationships (M:1 and 1:M) have cardinality of one or more in one

direction and one and only one in the other direction.

Business rules:

• Each CUSTOMER must be visited by one and only one SALES REPRESENTATIVE.

• Each SALES REPRESENTATIVE may be assigned to one or more CUSTOMERs.

36 | P a g e

Lesson 2.10: Many-to-Many Relationships

Many-to-many relationships (M:M) have cardinality of one or more in both directions.

Business rules:

• Each EMPLOYEE may be assigned to one or more JOBs.

• Each JOB may be carried out by one or more EMPLOYEEs

37 | P a g e

Lesson 2.11: One-to-One Relationships

One-to-one relationships (1:1) have cardinality of one and only one in both directions. The example

below is a one-to-one relationship because the cardinality is a line with no crow's feet in either direction.

These types of relations are the least common because they may instead be one entity with attributes

contained in that entity.

Business rules:

• Each COMPUTER must contain one and only one MOTHERBOARD.

• Each MOTHERBOARD must be contained in one and only one COMPUTER.

38 | P a g e

Lesson 2.12: Recursive Relationships

One additional relationship that must be mentioned is a recursive relationship. Recursive relationships

are relationships with an entity and itself. In the example below, there is a recursive relationship with the

EMPLOYEE entity. There are still two business rules for this type of relationship.

Business rules:

 Each EMPLOYEE may manage one or more EMPLOYEEs.

 Each EMPLOYEE must be managed by one and only one EMPLOYEE.

39 | P a g e

Lesson 2.16: Determining the Relationship’s Cardinality

The first question to answer is what is the minimum cardinality for each direction of the relationship?

In the following example, answer the following questions:

1. Must an EMPLOYEE be assigned to a DEPARTMENT?

Always.

2. Is there any situation in which an EMPLOYEE will not be assigned to a DEPARTMENT?

No, an EMPLOYEE must always be assigned to a DEPARTMENT. (Mandatory)

3. Must a DEPARTMENT be composed of an EMPLOYEE?

No, a DEPARTMENT does not have to be composed of an EMPLOYEE (Optional)

When the minimum cardinality is optional, the value could be zero. When the minimum cardinality is

mandatory, the value must be at least one.

Note that the relationship line in the diagram was intentionally drawn without the maximum cardinality.

Zero

(Optional)

ONE

(Mandatory)

40 | P a g e

The next question to answer is what is the maximum cardinality for each direction of the relationship?

In the following example, answer the following questions:

a. Must an EMPLOYEE be assigned to more than one DEPARTMENT?

No, an EMPLOYEE must always be assigned to one and only one DEPARTMENT. (One)

41 | P a g e

b. May a DEPARTMENT be composed of more than one EMPLOYEE?

Yes, a DEPARTMENT may be composed of one or more EMPLOYEEs (Many)

When the maximum cardinality is one, the value can only be one. When the maximum cardinality is many,

the value can be one or more.

ONE

(One and only one)

MANY

(One or more)

42 | P a g e

Lesson 2.18: Assigning keys - Unique Identifiers

A unique identifier (UID) is a special attribute (or group of attributes) that uniquely identifies a

particular instance of an entity. A unique identifier attribute is designated with a # symbol. Each

component of a unique identifier must be mandatory.

In the following example the unique identifier for ORDER is Order ID, for CUSTOMER it is CUSTOMER

ID, and for PRODUCT it is PRODUCT ID. The unique identifier for ORDER ITEM is a composite between

Line Item ID and the relationship with the ORDER entity. The vertical line on the relationship indicates

that it is part of the unique identifier in the ORDER ITEM entity (also called an identifying relationship).

This concept is discussed later in this lesson.

UID

Identifying

Relationship

UID

UID

UID

43 | P a g e

Lesson 2.20: Identifying Relationships

An identifying relationship is created when the unique identifier for an entity includes the relationship

with another entity for it to be unique. In the example below, the unique identifier for the ACCOUNT

entity is the ACCOUNT number as well as the relationship between BANK and ACCOUNT. The unique

identifier requires both the ACCOUNT Number and the relationship between BANK and ACCOUNT. The

identifying relationship is depicted with a vertical bar on the relationship line.

Note that a relationship included in a unique identifier must be mandatory and one-and-only-one in the

direction that participates in the unique identifier.

44 | P a g e

Lesson 2.21: Identifying Relationships with Multiple Entities

An entity may be uniquely identified through multiple relationships. In the example below, an

EMPLOYEE and PROJECT are needed to make WORK ASSIGNMENT unique, so both relationships are

included in the unique identifier for WORK ASSIGNMENT.

45 | P a g e

Lesson 2.23: Primary and Secondary Unique Identifiers

An entity can have more than one unique identifier. In the example below, there are two candidate

unique identifiers for the EMPLOYEE entity: badge number and payroll number. When this situation

occurs, select one candidate unique identifier to be the primary unique identifier, and the others to be

secondary unique identifiers.

46 | P a g e

Lesson 2.25: Normalization

Normalization is the process of organizing the attributes and tables of a relational database to

minimize data redundancy. Data redundancy may be where you have an attribute repeated in two or

more tables.

Edgar Codd, the inventor of the relational model, first introduced the concept of normalization and

what we now know as the First normal form (1NF) in 1970. He went on to define the Second normal

form (2NF) and Third normal form(3NF) in 1971. A relational database table is often described as

‘normalized’ if it is in the Third Normal Form.

An example of normalization is that an entity's unique identifier is stored everywhere in the system,

but its name is held in only one table. The name can be updated more easily in one row of one table.

For example, if we updated a department’s name from ‘HR’ to ‘Human Resources’. The update would

be done in one place and immediately the correct name would be displayed throughout the system.

Below are Codd’s rules of normalization – we will go through them in more detail in the following

pages.

First Normal Form (1NF) An entity is in the first normal form if it has no multivalued

attributes

Second Normal Form (2NF) An entity is in second normal form if it is already in first

normal form and all its attributes are fully dependent on

the concatenated unique identifier

Third Normal Form (3NF) An entity is in third normal form if it is already in second

normal form and all its attributes are fully dependent on

the unique identifier.

No attribute may “determine” any other attribute (no

transitive dependencies)

The tables created during the design will conform to the rules of normalization. Each formal

normalization rule from the relational database design has a corresponding data model

interpretation. The interpretations that can be used to validate the placement of attributes in an ERD

are shown in the table above.

47 | P a g e

The following are benefits of normalization:

• Normalization ensures that each attribute appropriately belongs to the entity to which it has

been assigned and not another entity.

• Normalization eliminates redundant storage of information; this simplifies application logic,

because developers do not need to think about multiple copies of the same piece of

information.

• Normalization ensures that you have one attribute in one place, with one name, with one

value, at any one time.

48 | P a g e

Lesson 2.26: First Normal Form (1NF)

First normal form validates that each attribute has a single value for each occurrence of the entity. There

should be no attribute that has a repeating value.

In the example below, we have some unnormalized data relating to Purchase Orders we issue: Purchase

Order No

Purchase Order Date Supplier

Id

Supplier Name Supplier

Address Postcode

Item Id Item

Name

Quantity

Price

Total Price

The ITEM ID, ITEM NAME, QUANTITY and PRICE attributes could have more than one value for each

PURCHASE ORDER NO. That is we have repeating values so the data is not in 1NF. You must perform the

following:

• Create another entity and move the attributes that are repeating to the new entity.

• Create an identifying 1:M relationship with the new entity.

49 | P a g e

In addition to having no multi-valued attributes (repeating values) repeating INF also decrees that the

attributes should only contain atomic values. An atomic value is a value that cannot be divided. ‘Non-

atomic’ attributes should be split into more than 1 field because they are hiding detail. For example,

SUPPLIER ADDRESS could be divided into STREET, TOWN and COUNTY. The decision on whether to

divided the attributes or not is down to your requirements – if it is likely you will want to find all suppliers

from a certain town then it would be useful to divide the address as we have done here.

The attributes ITEM ID, ITEM NAME,

QUANTITY and PRICE have multiple

values. Therefore, this is not in 1NF

Create an additional entity

ITEM with a 1:M

relationship to PO

50 | P a g e

Lesson 2.27: Second Normal Form (2NF)

Second normal form validates that each attribute is dependent on its entity’s unique identifier. Each

specific instance of the UID must determine a single instance of each attribute. Each attribute is not

dependent on only part of its entity’s UID.

Keeping to our Purchase Order example, if we look at the ITEM entity then you will see that the Item

Name and the Price are dependent on the Item Id but not on the PO No. The Quantity is dependent on

the PO No and the Item No. Therefore, the attributes must be moved and a new entity, ITEM DETAIL, is

created as shown below:

Create an additional entity

ITEM DETAIL with a 1:1

relationship to ITEM.

51 | P a g e

Lesson 2.28: Third Normal Form (3NF)

Third normal form validates that each attribute depends only on the UID of its entity (and on nothing else).

You need to move any non-UID attribute that is dependent on another non-UID attribute into a new entity.

Following on from the previous example, in the PO entity the Supplier Name, Supplier Address, Town

and Postcode attributes are dependent on the Supplier Id attribute. Because these attributes are

dependent in part on a non-UID attribute, the attributes, along with the non-UID attribute (Supplier

Id), should be moved to a new entity and an identifying relationship should be created.

Create a new SUPPLIER entity. Move the Supplier Name, Supplier Address, Town and Postcode

attributes to the new entity, and then create an identifying relationship.

In the ITEM entity the only non-UID is Quantity and as such it cannot be dependent on any other non-

UID attributes as they are not any, so this entity is already in 3NF. In the ITEM DETAIL entity, the Item

Name and Price are dependent on the Item Id and not on each other, so this entity is already in 3NF.

The Supplier Name, Supplier Address, Town and

Postcode attributes are dependent on the

Supplier ID (the non-unique identifier).

Therefore, this is not 3NF

52 | P a g e

Class Exercise: Taking unnormalised data and converting it into 3NF

Here is some unnormalized data – go through the steps of converting it first into 1NF, then into 2NF

and finally into 3NF.

Project

Code
Project

Title
Project

Manager
Project

Budget
Employee

ID
Employee

Name
Department

ID
Department

Name
Hourly

Rate
IT010 Pensions K Jones 123000 100 P Lewis 10 IT 23.43

IT010 Pensions K Jones 123000 102 S Smith 40 HR 34.21

IT010 Pensions K Jones 123000 104 H Finn 40 HR 35.21

IT060 Salaries H Evans 345000 107 G Bale 20 DBA 23.24

IT060 Salaries H Evans 345000 332 L Jones 30 ACCOUNTS 45.22

IT060 Salaries H Evans 345000 201 P Smith 30 ACCOUNTS 19.34
IT060 Salaries H Evans 345000 103 T Woods 30 ACCOUNTS 23.51

IT089 HR L Adams 100020 111 D Banks 10 IT 24.45

IT089 HR L Adams 100020 107 G Bale 20 DBA 22.33

IT089 HR L Adams 100020 110 J Wills 30 ACCOUNTS 33.12

53 | P a g e

Section 3: Denormalization

In this section you will cover the following topics:

 What Is Denormalization?

 Different Denormalization Techniques

o Storing Derivable Values

o Pre-Joining Tables

o Hard-Coded Values

o Keeping Details with the Master Table

o Repeating Current Detail with the Master Table

o Adding an END_DATE Column

o Adding a CURRENT_ROW_INDICATOR Column

o Hierarchy Level Indicator

o Short Circuit Keys

 Denormalize verses Normalization



54 | P a g e

Lesson 3.1: What Is Denormalization?

Denormalization is the process of adding redundancy to the data to improve performance. You first of

all start with a normalized model and then add redundancy to the design. This reduces the integrity of

the design and often means you need application code to compensate.

It is worth considering denormalization to systematically add redundancy to the database to help

improve performance after other options such as indexing have failed. Denormalization can improve

certain types of data access dramatically, but there is no guaranteed success and there is always a cost.

Denormalization makes the data model less robust, and it will always slow down data manipulation

language (DML). It complicates processing and introduces the possibility of data integrity problems. It

always requires additional programming to maintain the denormalized data.

Here are some guidelines for denormalizing:

• Always create a conceptual data model that is completely normalized.

• Consider denormalization as the last option to boost performance. Never presume that

denormalization is required.

• Do denormalization during the database design.

• After performance objectives have been met, do not implement any further

denormalization.

• Fully document all denormalization, stating what was done to the tables and what

application code was added to compensate for the denormalization.

Over the next few pages we will look at some of the different techniques that can be used to

denormalize data.

55 | P a g e

Lesson 3.2: Storing Derivable Values

When a calculation is frequently executed during queries, it can be worthwhile to store the results of

that calculation. If the calculation involves detail records, you should store the derived calculation in the

master table. For example, adding an ORDER_TOTAL column to an ORDERS table to store the derived

value of an order. Make sure to write application code to recalculate the value each time that DML is

executed against the detail records. In all situations of storing derivable values, it is important to check

that the denormalized values cannot be directly updated. They should always be recalculated by the

system.

This denormalizing technique is appropriate when:

 Source values are in multiple records or tables

 Derivable values are frequently needed, and source values are not needed

 Source values are infrequently changed

The advantages of using this technique include the following:

 Source values do not need to be looked up every time the derivable value is required.

 The calculation does not need to be performed during a query or report.

However, there are some disadvantages in using this approach such as:

 DML against the source data will require recalculation or adjustment of the derivable data.

 Data duplication introduces the possibility of data inconsistencies.

56 | P a g e

Lesson 3.3: Pre-Joining Tables

You can pre-join tables by including a non-key column in a table, when the actual value of the primary

key―and consequentially the foreign key―has no business meaning. By including a non-key column

that has business meaning, you can avoid joining tables, thus speeding up specific queries.

You must include application code that updates the denormalized column each time the ‘master’

column value changes in the referenced record.

This denormalizing technique is appropriate when:

• Frequent queries against many tables are required

• Slightly stale data is acceptable

The advantages of using this technique include the following:

• Time-consuming joins can be avoided.

• Updates can be postponed when stale data is acceptable.

However, there are some disadvantages in using this approach such as:

• Extra DML is needed to update the original non-denormalized column.

• Extra columns and possibly larger indexes require more working and disk space.

57 | P a g e

Lesson 3.4: Hard-Coded Values

If a reference or lookup table contains records that remain constant, you can consider hard-coding

those values into the application code. This means that you will not need to join tables to retrieve the

list or reference values. This is a special type of denormalization, when values are kept outside the table

in the database.

In the following example, the PRODUCT_STATUS column contains values that are constant. In this case,

you can create a check constraint on the PRODUCT_STATUS column that will validate the values. It

worth mentioning that a check constraint, though it resides in the database, is still a form of hard coding.

Whenever a new value of PRODUCT_STATUS is needed, the constraint must be modified.

This denormalizing technique is appropriate when:

• The set of allowable values can reasonably be considered to be static during the life cycle of

the system

• The set of possible values is small (perhaps less than 30)

The advantages of using this technique include the following:

• Implementing a look-up table is not necessary.

• Joins to a look-up table are not necessary.

However, changing look-up values requires recoding and retesting.

58 | P a g e

Lesson 3.5: Keeping Details with the Master Table

In a situation where the number of detail records per master is a fixed value (or has a fixed maximum)

and where usually all detail records are usually queried with the master, you may consider adding the

detail columns to the master table. This denormalization technique works best when the number of

records in the detail table is small. In this way, you reduce the number of joins during queries.

This denormalizing technique is appropriate when:

• The number of detail records for all masters is fixed and static

• The number of detail records multiplied by the number of columns of the detail is small

(perhaps less than 30)

The advantages of using this technique include the following:

• No joins are required.

• It saves space because keys are not propagated.

However, the disadvantages of using this approach include the following:

• It increases the complexity of DML and SELECTs across detail values.

• Checks must be repeated for each repeating column.

59 | P a g e

Lesson 3.6: Repeating Current Detail with the Master Table

Often when the storage of historical data is necessary, many queries require only the most current

record. You can add a new foreign key column to store this single detail with its master. Make sure you

add code to change the denormalized column any time a new record is added to the history table.

Additional code must be written to maintain the duplicated single detail value for the master record.

In the following example, the price for a product is maintained in the PRICE_HISTORY table by the

EFFECTIVE_DATE column.

The CURRENT_LIST_PRICE column is added to the PRODUCT_INFORMATION table to store the current

detail information.

60 | P a g e

This denormalizing technique is appropriate when:

• Detail records per master have a property such that one record can be considered ‘current’

and others can be considered ‘historical’

• Queries frequently need this specific single detail and only occasionally need the other

details

• The master often has only one single detail record

The advantage of using this technique means no join is required for queries that need only the specific

single detail. Whereas the disadvantage is the possibility of data inconsistencies due to the detail value

being repeated

61 | P a g e

Lesson 3.7: Adding an END_DATE Column

One of the most common denormalization techniques is to store the end date for periods that are

consecutive. As a result, the end date for a period can be derived from the start date of the previous

period. Using this technique, you can find a detail record for a particular date without using a complex

query.

In the following example, the END_DATE column is added to the PRICE_HISTORY table.

As a result, if you want to check the price between a certain set of dates, you can create a query using

the BETWEEN clause.

This denormalizing technique is appropriate when queries are needed from tables with long lists or

records that are historical, and you are interested in the most current record

The main advantage of using this technique is that you can use the BETWEEN operator for date- selection

queries instead of a potentially time-consuming synchronizing subquery.

On the downside extra code is needed to populate the END_DATE column with the value found in the

previous start date record.

62 | P a g e

Lesson 3.8: Adding a CURRENT_ROW_INDICATOR Column

This denormalization technique enables you to quickly find the most current detail record by

adding a new indicator column to the details table to represent the currently active row. You

would need to add code to update the indicator column each time that you insert a new record.

In the following example, the CURRENT_INDICATOR column is added to the

PRICE_HISTORY table to enable you to query the currently active row more easily.

This denormalizing technique is appropriate when the situation requires retrieving the most current

record from a long list.

The main advantages of using this technique means that queries and subqueries are less complicated.

However, extra column and application code is needed to maintain the column and the concept of

“current” makes it impossible to make data adjustments ahead of time.

63 | P a g e

Lesson 3.10: Short Circuit Keys

For database designs that contain three (or more) levels of master detail where there is a need to query

only the lowest and highest-level records, consider creating a short circuit key. These new foreign key

definitions directly link the lowest-level detail records to higher-level grandparent records. The result

can produce fewer table joins when queries execute.

In the following example, you frequently want to know which region a particular department is in. As a

result, you can create a foreign key between the DEPARTMENTS and REGIONS table.

64 | P a g e

Lesson 3.11: Denormalize verses Normalization

There are advantages and disadvantages with both of these techniques.

Normalized tables are usually smaller and take up less storage as the data is divided vertically among

many tables. This allows them to perform better as they are small enough to get fit into the buffer. Their

updates and inserts are very fast because the data to be updated is located at a single place and there

are no duplicates. And selects are fast in cases where data has to be fetched from a single table, as

normally normalized tables are small enough to fit into the buffer. And finally, as the data is not

duplicated in normalization there is less need for GROUP BY or DISTINCT queries.

The main cause of concern with fully normalized tables is that normalized data means joins between

tables. Even with efficient indexing strategies querying data suffers.

Denormalized databases tend to do better with querying as the data is present in the same table so

there is no need for any joins, hence the selects tend to be faster than with normalized tables.

A single table with all the required data allows much more efficient index usage. If the columns are

indexed properly, then results can be filtered and sorted by utilizing the same index. While in the case

of a normalized table, since the data would be spread out in different tables, this would not be possible.

Although selects can be very fast on denormalized tables, because the data is duplicated, the updates

and inserts become complex and costly.

So, in summary neither one of the above approaches can be entirely ignored as a real world application

is going to have both read and write loads. Therefore, the correct way would be to use both the

normalized and denormalized approaches depending on the situation.

65 | P a g e

Section 4: Data warehousing concepts

In this section you will cover the following topics:

 What Is a Data Warehouse?

 What are the Data Warehouse components?

 Star and Snowflake schemas

 Facts, Dimensions and Measures

 Slowly Changing Dimensions

66 | P a g e

Lesson 4.1: What Is a Data Warehouse?

There are many definitions for the term “data warehouse” and disagreements over specific implementation details. It

is generally agreed, however, that a data warehouse is a centralized store of business data that can be used for

reporting and analysis to inform key decisions.

Typically, a data warehouse:

 Contains a large volume of data that relates to historical business transactions.

 Is optimized for read operations that support querying the data. This is in contrast to a typical Online

Transaction Processing (OLTP) database that is designed to support data insert, as well as update and delete

operations.

 Is loaded with new or updated data at regular intervals.

 Provides the basis for enterprise BI applications.

As shown below a data warehouse is constructed by integrating data from multiple heterogeneous sources that

support analytical reporting, structured and/or ad hoc queries, and decision making. Data warehousing involves data

cleaning, data integration, and data consolidations.

67 | P a g e

Lesson 4.2: Components of a Data Warehouse

A data warehousing solution usually consists of the following elements:

Data sources

Sources of business data for the data warehouse, often including OLTP application databases, flat files, XML files and

data exported from proprietary systems, such as accounting applications.

An Extract, Transform, and Load (ETL) process

A process for accessing data in the data sources, modifying it to conform to the data model for the data warehouse,

and loading it into the data warehouse.

Data staging areas

Intermediary locations where the data to be transferred to the data warehouse is stored. It is prepared here for import

and loading into the data warehouse.

A data warehouse

A relational database designed to provide high-performance querying of historical business data for reporting and

analysis.

68 | P a g e

Many data warehousing solutions also include:

Data cleansing and deduplication

A solution for resolving data quality issues before it is loaded into the data warehouse.

Master Data Management (MDM)

A solution that provides an authoritative data definition for business entities used by multiple systems across the

organization.

69 | P a g e

Lesson 4.3: The Dimensional Model

Although data warehouses can be implemented as normalized, relational database schemas, most designs are based

on the dimensional model advocated by Ralph Kimball. In the dimensional model, the numeric business measures that

are analyzed and reported are stored in fact tables, which are related to multiple dimension tables, in which the

attributes by which the measures can be aggregated are stored. For example, a fact table might store sales order

measures, such as revenue and profit, and be related to dimension tables representing business entities such as

product and customer. These relationships make it possible to aggregate the sales order measures by the attributes

of a product for example, to find the total profit for a particular product model.

Dimension

A dimension is a structure that categorizes facts and measures in order to enable users to answer business questions.

Commonly used dimensions are people, products, place and time.

https://en.wikipedia.org/wiki/Fact_(data_warehouse)
https://en.wikipedia.org/wiki/Measure_(data_warehouse)

70 | P a g e

Fact

A Fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star

schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are

arranged as a fact constellation schema. A fact table typically has two types of columns: those that contain facts and

those that are a foreign key to dimension tables. The primary key of a fact table is usually a composite key that is made

up of all of its foreign keys.

Star Schema

Ideally, a dimensional model can be implemented in a database as a “star” schema, in which each fact table is directly

related to its relevant dimension tables. A common approach is to design a star schema in which numerical measures

are stored in fact tables that have foreign keys to multiple dimension tables containing the business entities by which

the measures can be aggregated. Before designing your data warehouse, you must know which dimensions your

business users employ when aggregating data, which measures need to be analyzed and at what granularity, and

which facts include those measures. You must also carefully plan the keys that will be used to link facts to dimensions,

and consider whether your data warehouse must support the use of dimensions that change over time. For example,

handling dimension records for customers who change their address.

Snowflake Schema

However, in some cases, one or more dimensions may be normalized into a collection of related tables to form a

“snowflake” schema. Generally, you should avoid creating snowflake dimensions because, in a typical data warehouse

workload, the performance benefits of a single join between fact and dimension tables outweigh the data redundancy

reduction benefits of normalizing the dimension data.

Note

You must also consider the physical implementation of the database, because this will affect the performance and

manageability of the data warehouse. It is common to use table partitioning to distribute large fact data across multiple

physical disk. You should also consider the appropriate indexing strategy for your data, and whether to use data

compression when storing it.

https://en.wikipedia.org/wiki/Fact_(data_warehouse)
https://en.wikipedia.org/wiki/Business_process
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Dimension_table
https://en.wikipedia.org/wiki/Fact_constellation_schema
https://en.wikipedia.org/wiki/Foreign_key

71 | P a g e

Lesson 4.4: The Data Warehouse Design Process

Although every project has its unique considerations, there is a commonly-used process for designing a dimensional

data warehouse that many BI professionals have found effective. The method is largely based on the data warehouse

design patterns identified and documented by Ralph Kimball and the Kimball Group, though some BI professionals

may adopt a varied approach to each task.

1. Determine analytical and reporting requirements

2. Identify the business processes that generate the required data

3. Examine the source data for those business processes

4. Conform dimensions across business processes

5. Prioritize processes and create a dimensional model for each

6. Document and refine the models to determine the database logical schema

7. Design the physical data structures for the database

After you identify the business processes and conformed dimensions, you can document them in a matrix

72 | P a g e

You can then use the matrix to select each business process based on priority, and design a dimensional model by

performing the following steps:

Identify the grain

The grain of a dimensional model is the lowest level of detail at which you can aggregate the measures. It is

important to choose the level of grain that will support the most granular of reporting and analytical

requirements, so typically the lowest level possible from the source data is the best option. For example, an

order processing system might record data at two levels. There may be order-level data, such as the order date,

salesperson, customer, and shipping cost, as well as line item-level data like the products included in the order

and their individual quantities, unit costs, and selling prices. To support the most granular analysis and reporting,

the grain should be declared at the line item level, so the fact table will contain one row per line item.

Select the required dimensions

Next, determine which of the dimensions related to the business process should be included in the model. The

selection of dimensions depends on the reporting and analytical requirements, specifically on the business

entities by which users need to aggregate the measures. Almost all dimensional models include a time-based

dimension, and the others generally become obvious as you review the requirements.

Identify the facts.

Finally, identify the facts that you want to include as measures. These are numeric values that can be expressed

at the level of the grain chosen earlier and aggregated across the selected dimensions. Some facts will be taken

directly from source systems, and others might be derived from the base facts. For example, you might choose

Quantity and Unit Price facts from an order processing source system, and then calculate a total Sales

Amount.

73 | P a g e

Lesson 4.5: Designing Dimension Tables

After designing the dimensional models for the data warehouse, you can translate the design into a logical

schema for the database. However, before you design dimension tables, it is important to consider some

common design patterns and apply them to your table specifications.

Dimension Keys

Each row in a dimension table represents an instance of a business entity by which the measures in the fact

table can be aggregated. Like other tables in a database, a key column uniquely identifies each row in the

dimension table. In many scenarios, the dimension data is obtained from a source system in which a key is

already assigned (sometimes referred to as the “business” key). When designing a data warehouse, however, it

is standard practice to define a new “surrogate” key that uses an integer value to identify each row.

A surrogate key is recommended for the following reasons:

 The data warehouse might use dimension data from multiple source systems, so it is possible that

business keys are not unique.

 Some source systems use non-numeric keys, such as a globally unique identifier (GUID), or natural keys,

such as an email address, to uniquely identify data entities. Integer keys are smaller and more efficient

to use in joins from fact tables.

 Each row in a dimension table represents a specific version of a business entity instance. If the

dimension table supports “Type 2” slowly-changing dimensions, the table might need to contain

multiple rows that represent different versions of the same entity. These rows will have the same

business key and won’t be uniquely identifiable without a surrogate key.

74 | P a g e

Typically, the business key is retained in the dimension table as an “alternate” key. Business keys that are based

on natural keys can be familiar to users analyzing the data. For example, a ProductCode business key that

users will recognize might be used as an alternate key in the Product dimension table. However, the main

reason for retaining a business key is to make it easier to manage slowly-changing dimensions when loading

new data into the dimension table. The ETL process can use the alternate key as a lookup column to determine

whether an instance of a business entity already exists in the dimension table.

Dimension Attributes and Hierarchies

In addition to the surrogate and alternate key columns, a dimension table includes a column for each attribute

of the business entity that is needed to support reporting and analytical requirements. When designing a

dimension table, you need to identify and include attributes that will be used in reports and analysis. Typically,

dimension attributes are used in one of the following three ways:

Hierarchies. Multiple attributes can be combined to form hierarchies that enable users to drill down into

deeper levels of detail. For example, the Customer table in the slide includes Country, State, and City

attributes that can be combined to form a natural geographical hierarchy. Business users can view aggregated

fact data at each level, for example, to see sales order revenue by country. They can then access a specific

country to see a breakdown by state, before drilling further into a specific state to see sales revenue by city.

Slicers. Attributes do not need to form hierarchies to be useful in analysis and reporting. Business users can

group or filter data based on single-level hierarchies to create analytical sub-groupings of data. For example,

the Gender attribute in the Customer table can be used to compare sales revenue for male and female

customers.

Drill-through detail. Some attributes have little value as slicers or members of a hierarchy. For example, it

may be unlikely that a business user will need to analyze sales revenue by customer phone number. However,

it can be useful to include entity-specific attributes to facilitate drill-through functionality in reports or analytical

applications. For example, in a sales order report that enables users to drill down to the individual order level,

users might want to double-click an order and drill through to see the name and phone number of the customer

who placed it.

75 | P a g e

Note

As a general rule, try to design your data warehouse in a way that eliminates, or at least minimizes, NULL values,

particularly in fact table key columns that reference dimension tables. NULL values make it easy to accidentally

eliminate rows from reports and produce misleading totals.

76 | P a g e

Lesson 4.6: Designing Slowly Changing Dimensions

Slowly changing dimensions (SCDs) are a significant consideration in the design of dimension tables. You should

try to identify requirements for maintaining historic dimension attribute values as early as possible in the design

process.

There are three common techniques used to handle attribute value changes in SCDs:

Type 1. These changes are the simplest type of SCD to implement. Attribute values are updated directly in the

existing dimension table row and no history is maintained. This makes Type 1 changes suitable for attributes

that are used to provide drill-through details, but unsuitable for analytical slicers or hierarchy members where

historic comparisons must reflect the attribute values as they were at the time of the fact event.

Type 2. These changes involve the creation of a fresh version of the dimension entity in the form of a new row.

Typically, a bit column in the dimension table is used as a flag to indicate which version of the dimension row is

the current one. Additionally, datetime columns are often used to indicate the start and end of the period for

which a version of the row was (or is) current. Maintaining start and end dates makes it easier to assign the

appropriate foreign key value to fact rows as they are loaded so they are related to the version of the dimension

entity that was current at the time the fact occurred.

Type 3. These changes are rarely used. In a Type 3 change, the previous value (or sometimes a complete history

of previous values) is maintained in the dimension table row. This requires modifying the dimension table

schema to accommodate new values for each tracked attribute, and can result in a complex dimension table

that is difficult to manage.

77 | P a g e

Lesson 4.7: Designing Fact Tables

Fact tables contain the numeric measures that can be aggregated across the dimensions in your dimensional

model and can become extremely large.

Fact Table Columns

A fact table usually consists of the following kinds of columns:

78 | P a g e

Dimension keys. Fact tables reference dimension tables by storing the surrogate key for each related

dimension

Measures. In most cases, a fact table is primarily used to store numeric measures that can be aggregated by

the related dimensions. A fact table with no numeric measure columns is sometimes referred to as a “factless

fact table”.

Degenerate dimensions. Sometimes, a fact has associated attributes that are neither keys nor measures, but

which can be useful to group or filter facts in a report or analysis. You might include this column in the fact table

where client applications can use it as a “degenerate dimension” by which the fact data can be aggregated.

Note: Unlike most database tables, a fact table does not necessarily require a primary key.

Types of Fact Table

Generally, data warehouses include fact tables that are one of the following three types:

79 | P a g e

Transaction fact tables. The most common kind of fact table is a “transaction” fact table, in which each row

records a transaction or event at an appropriate grain. For example, a fact table might record sales orders at

the line item grain, in which each row records the purchase of a specific item.

Periodic snapshot tables. These record measure values at a specific point in time. For example, a fact table

might record the stock movement for each day, including the opening and closing stock count figures.

Accumulating snapshot fact tables. These can be used in scenarios where you might want to use a fact

table to track the progress of a business process through multiple stages. For example, a fact table might track

an order from initial purchase through to delivery by including a date dimension key field for the order date,

shipping date, and delivery date. The ShipDate and DeliveryDate columns for orders that have been placed

but not yet shipped will contain the dimension key for an “Unknown” or ”None” row in the time dimension

table.

80 | P a g e

Section 5: Fundamentals of SQL Developer Data Modeler and

PowerDesigner Viewer

In this section you will cover the following topics:

 Introduction to PowerDesigner Viewer

 Create a new Design using SQL Developer Data Modeler

 Create a logical data model using SQL Developer Data Modeler

 Create a physical data model from the logical data model using SQL Developer Data

Modeler

 Generate the DDL using SQL Developer Data Modeler

 Reverse engineer from a database schema using SQL Developer Data Modeler

81 | P a g e

Lesson 5.1: Introduction to PowerDesigner Viewer

PowerDesigner is an end-to-end modeling tool produced by Sybase and is now owned by SAP. It was

initially developed to design Oracle databases in the mid 1990s, but has now evolved to also support MS

SQL Server, PostgeSQL, MySQL, DB2 and Informix. It runs on a Windows OS as a standalone tool.

PowerDesigner supports standard methodologies and notations and provides automated code- reverse

engineering and generation through customizable templates.

PowerDesigner viewer is a free tool that can open, read, and navigate any PowerDesigner model from

past or current versions, as well as generate and print reports based on the contents of the models.

http://en.wikipedia.org/wiki/Sybase

82 | P a g e

Lesson 5.1: Create a new Design using SQL Developer Data Modeler

SQL Developer Data Modeler is data modeling tool developed by Oracle. Using the tool users can create,

browse and edit, logical, relational and physical models.

When you start SQL Developer Data Modeler it will take you to this start page:

As with PowerDesigner there is a browser on the left and a work area in the middle. The equivalent of

PowerDesigner’s Workspaces are Designs in SQL Developer Data Modeler. A new empty Design is

created automatically for you when you first start up the tool.

83 | P a g e

Lesson 5.3: Create a logical data model using SQL Developer Data Modeler

In the Browser, right click on Logical Model node and select Show. Notice that the toolbar changes to

display tools specifically for working with entity relationship diagrams.

To create an entity:

On the toolbar, click the New Entity tool and click anywhere in the white space of the Logical pane

The Entity Properties window appears in which you can enter the name of the entity and other relevant

information.

84 | P a g e

Next add the attributes to the entity – click on Attributes link. Click the Add an Attribute icon

In the Name field, enter a name for the attribute, its data type, type, and identifier (if appropriate) and

any other relevant data and click on Apply. Repeat these steps until you have created all the attributes

for this entity. You can use the up and down arrows to reorder the columns. When all the attributes have

been created, click OK to create the entity and its attributes.

85 | P a g e

To define the relationships between the click the desired relationship type on the toolbar.

 If you hover over each icon a tooltip will tell you which relationship it creates. Next

click the source entity and then the target entity to create a relationship. In our example we

have two entities EMPLOYEE and DEPARTMENT and the relationship is between the Department ID in

both entities.

86 | P a g e

One department can employee many employees but one employee can only work for one department

– so this will be a one-to-many (1:N) relationship with the EMPLOYEE entity being the target and the

DEPARTMENT being the source. Click on the DEPARTMENT entity first and then the EMPLOYEE one.

This will automatically display Relation Properties box as shown below. Specify the name of the

relationship.

Specify the source and target names for the relationship. Note that these names will be specified in the

diagram and will be used to validate the business rules for the relationship.

Specify the minimum and maximum cardinality for the relationship. The Source Optional option controls

whether the source entity in the relation must contain one or more instances. The Target Optional option

controls whether the target entity in the relationship must contain one or more instances. In the example

in the slide, the check box for Target Optional was deselected because there must be a DEPARTMENT

for each EMPLOYEE.

Specify whether this is an identifying relationship by selecting the Identifying option.

87 | P a g e

Click Apply and then OK

To move a created entity to a different position right click on the entity hold the mouse button down

and drag it into position. Release the button when it is in the correct position.

88 | P a g e

Lesson 5.4: Create a physical data model from the logical data model using SQL

Developer Data Modeler

You can develop the relational model as follows:

Click on the Logical Model in the Browser, and click the Engineer to Relational Model icon on the
toolbar. The Engineering dialog box is displayed.

For now, accept all defaults (i.e. do not filter), and click Engineer. This causes the Relational_1 model to

be populated with tables and other objects that reflect the logical model.

89 | P a g e

Expand the Relational Models node in the object browser on the left side of the window and expand

Relational_1 and optionally nodes under it that contain any entries (such as Tables and Columns), to view

the objects created.

90 | P a g e

Change the name of the relational model from Relational_1 to something more meaningful for

diagram displays, such as Human Resources. To do this right click the Relational_1 node in the

hierarchy display, select Properties, in the General pane of the Model Properties – Relational_1

 dialog box specify Name as Human Resources, and click OK.

91 | P a g e

Lesson 5.5: Generate the DDL using SQL Developer Data Modeler

Now we will look at how you can generate Data Definition Language (DDL) statements that you can use

to create database objects that reflect the models that you have designed. The DDL statements will

implement the physical model (ie type of database) such as Oracle Database 11g) that you specify.

You can develop the physical model by following the steps outlined below.

Expand the Relational Model in the Browser and right click the Physical Models node and select New.

A dialog box is displayed for selecting the type of database for which to create the physical model.

Specify the type of database (for example, Oracle Database 11g), and click OK.

A physical model reflecting the type of database is created under the Physical Models node.

Expand the Physical Models node under the Library relational model, and expand the newly created

physical model and the Tables node under it, to view the table objects that were created.

92 | P a g e

Click File, then Export, then DDL File.

Select the database type (for example, Oracle Database 11g) and click Generate. The DDL Generation

Options dialog box is displayed.

93 | P a g e

Accept all defaults, and click OK. A DDL file editor is displayed, with SQL statements to create the tables

and add constraints.

94 | P a g e

95 | P a g e

Click Save to save the statements to a .sql script file (for example, create_hr_objects.sql) on your local

system.

Later, run the script (for example, using a database connection and SQL Worksheet in SQL Developer)

to create the objects in the desired database.

Click Close to close the DDL file editor.

To save the design right click on Untitled_1 in the Browser and select Save Design, give the file a name

eg hrDesign and click Save. This creates a folder called hrDesign to hold the detailed information about

the design and a file called hrDesign.dmd. It is this file that you open when you want to view or change

the models. The file loads the whole design into Data Modeler.

96 | P a g e

Lesson 5.6: Reverse engineer from a database schema using SQL Developer Data

Modeler

Reverse engineer in this context means we can take an existing data base schema and create a

relational model based on it. We are going to use the HR schema which already exists in your database.

First of all, close any open Designs.

This process requires the following actions:

1. Connect to the database

2. Select the Schema or Database you want to use

3. Select the objects you want to include

4. Generate the design

Start by select File > Import > Data Dictionary. Select the connection you wish to use and click Next. If

the connection does not already exist, you will need to create it first.

97 | P a g e

Your trainer will give you the connection information for the class. Click on Add and complete the form.

98 | P a g e

Once the connection is completed successfully you will be able to select the schema you want to import

as shown below

Click Next. Select the objects you want to import.

99 | P a g e

Click Next. View the summary and click Finish. The Design will be generated:

100 | P a g e

Next we want to Reverse Engineer the Relational Model to a Logical Model. Select the Engineer to Logical

Model icon . An engineering window opens. The warning icons indicate that objects are different

between the relational and logical model. Expand the Tables object.

101 | P a g e

The plus sign icon indicates that the tables will be added to the logical model. Click Engineer. You should now

see the logical model created successfully.

102 | P a g e

103 | P a g e

Lesson 5.6: Create a multidimensional model using SQL Developer Data Modeller

In this lesson the SH schema will be used. SH is the Sales History schema of the Oracle sample schemas.

Generating a Multidimensional Model

To generate a multidimensional model, you engineer the relational model to a logical model and then generate

the multidimensional model

You can create a multidimensional model. In the left navigator, right-click Multidimensional Models and

select New Multidimensional Model.

104 | P a g e

To create the multidimensional model right-click SH_Multidimensional and select Engineer From Oracle Model.

On the ‘Select Oracle Model’ form, select ‘SH_Schema’ for Relational Model, ‘Use Foreign Keys’ for Match

Method. Click ‘OK’

105 | P a g e

Display the Multidimensional Model. Layout the model using Auto Route and Resize Object to Visible.

106 | P a g e

Part III – Relational Databases using Oracle

107 | P a g e

Section 1: Development Tools

In this section you will learn:

 What SQL Developer is
 How to use SQL Developer

108 | P a g e

Lesson 1.1: Overview SQL Developer

The main development tool used in this training is Oracle SQL Developer. SQL*Plus is available as an optional

development tool. This is appropriate for a 10g and 11g audience.

What is Oracle SQL Developer?

Oracle SQL Developer is free and fully supported graphical tool that enhances productivity and simplifies

database development tasks. Using SQL Developer, users can browse, edit and create database objects, run

SQL statements, edit and debug PL/SQL statements and build PL/SQL unit tests, run reports, and place files

under version control.

Getting Started with Oracle SQL Developer

Download the latest Oracle SQL Developer from

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

Creating a Database Connection

A connection is an Oracle SQL Developer object that specifies the necessary information for connecting to a

specific database as a specific user of that database. To use Oracle SQL Developer, you must have at least one

database connection, which may be existing, created, or imported .You can create and test connections for

multiple databases and for multiple schemas .By default, the tnsnames.ora file is located in the

$ORACLE_HOME/network/admin directory. But, it can also be in the directory specified by the TNS_ADMIN

environment variable or the registry value. When you start Oracle SQL Developer and display the Database

Connections dialog box, Oracle SQL Developer automatically imports any connections defined in the

tnsnames.ora file on your system.

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

109 | P a g e

To create a database connection, perform the following steps:

1. On the Connections tabbed page, right-click Connections and select New Connection.

2. In the New/Select Database Connection window, enter the connection name. Enter the username

and password of the schema that you want to connect to.

1. From the Role drop-down list, you can select either default or SYSDBA

2. You can select the connection type as:

- Basic: In this type, you enter the host name and system identifier (SID) for the database that you

want to connect to. The Port is already set to 1521. Or, you can also enter the Service name

directly if you are using a remote database connection.

- TNS: You select any one of the database aliases imported from the tnsnames.ora

3. Click Test to make sure that the connection has been set correctly.

4. Click Connect.

110 | P a g e

111 | P a g e

Lesson 1.2: Oracle RDS

Oracle® Database is a relational database management system developed by Oracle. Amazon RDS makes it

easy to set up, operate, and scale Oracle Database deployments in the cloud. With Amazon RDS, you can

deploy multiple editions of Oracle Database in minutes with cost-efficient and re-sizable hardware capacity.

Amazon RDS frees you up to focus on application development by managing time-consuming database

administration tasks including provisioning, backups, software patching, monitoring, and hardware scaling.

To launch an Oracle DB instance

1. Sign in to the AWS Management Console and open the Amazon RDS console

at https://console.aws.amazon.com/rds/.

2. In the upper-right corner of the AWS Management Console, choose the AWS Region

in which you want to create the DB instance. This example uses the US West

(Oregon) Region.

3. In the navigation pane, choose Databases.

4. Choose Create database.

5. On the Create database page, shown following, make sure that the Standard

Create option is chosen, and then choose Oracle.

https://aws.amazon.com/relational-database/
https://aws.amazon.com/what-is-cloud-computing/
https://console.aws.amazon.com/rds/

112 | P a g e

6. In the Templates section, choose Dev/Test.

7. In the Settings section, set these values:

 DB instance identifier – database1-db-instance

 Master username – Admin

 Auto generate a password – Disable the option

 Master password – Choose a password.

 Confirm password – Retype the password.

113 | P a g e

8. In the Templates section, choose Dev/Test.

9. Choose required database setting and select Create Database

114 | P a g e

Lesson 1.3: Connecting to a DB Instance Running the Oracle Database Engine

Each Amazon RDS DB instance has an endpoint, and each endpoint has the DNS name and port number for

the DB instance. To connect to your DB instance using a SQL client application, you need the DNS name and

port number for your DB instance.

1. Sign in to the AWS Management Console and open the Amazon RDS console

at https://console.aws.amazon.com/rds/.

2. In the upper-right corner of the console, choose the AWS Region of your DB

instance.

3. Find the DNS name and port number for your DB Instance.

a. Choose Databases to display a list of your DB instances.

b. Choose the Oracle DB instance name to display the instance details.

c. On the Connectivity & security tab, copy the endpoint. Also, note the port

number. You need both the endpoint and the port number to connect to the

DB instance.

https://console.aws.amazon.com/rds/

115 | P a g e

116 | P a g e

Connecting to Your DB Instance Using Oracle SQL Developer

1. Start Oracle SQL Developer.

2. On the Connections tab, choose the add (+) icon.

3. In the New/Select Database Connection dialog box, provide the information for

your DB instance:

 For Connection Name, enter a name that describes the connection, such

as Oracle-RDS.

 For Username, enter the name of the database administrator for the DB

instance.

 For Password, enter the password for the database administrator.

 For Hostname, enter the DNS name of the DB instance.

 For Port, enter the port number.

 For SID, enter the Oracle database SID.

The completed dialog box should look similar to the following.

117 | P a g e

4. Choose Connect.

118 | P a g e

Lesson 1.4 Writing queries SQL Developer

Once you have a database connection, you are ready to browse the schema, query and modify data.

You can use the SQL Worksheet toolbar that contains icons to perform the following tasks:

Execute Statement: This executes the statement at the cursor in the Enter SQL Statement box.

Alternatively, you can press [F9]. The output is generally shown in a formatted manner

in the Results tab page.

Run Script: This executes all statements in the Enter SQL Statement box using the Script Runner.

The output is generally shown in the conventional script format in the Scripts tab page.

Commit: This writes any changes to the database and ends the transaction.

Rollback: This discards any changes to the database, without writing them to the database, and

ends the transaction.

119 | P a g e

 Query all the data in the DEPARTMENTS table. Enter the select statement below and click Execute Statement

or F9.

SQL SELECT * from departments;

Query Results

In the SQL Worksheet, you can use the Enter SQL Statement box to enter a single or multiple SQL statements.

For a single statement, the semicolon at the end is optional. When you enter the statement, the SQL keywords

are automatically highlighted. To execute a SQL statement, ensure that your cursor is within the statement

and click the Execute Statement icon. Alternatively, you can press [F9]. To execute multiple SQL statements

and see the results, click the Run Script icon. Alternatively, you can press [F5].

120 | P a g e

Instead of selecting all the columns from a table, you can itemize them, selecting only the data you require.

Instead of typing in each column name, you can just drag the table name from the Connection Navigator.

Expand the Tables node and drag the EMPLOYEES table onto the worksheet.

121 | P a g e

Use SQL*Plus commands

The SQL Worksheet allows you to use a selection of SQL*Plus commands. SQL*Plus commands have to be

interpreted by the SQL Worksheet before being passed to the database. Some commands are not supported

and are hence ignored and are not SENT to the Oracle database.

Instead of CLICKING on F9, select Run Script or F5.

SQL describe EMPLOYEES

Query results

122 | P a g e

Formatting the SQL Code

You may want to apply indentation, spacing, capitalization, and the line separation of the SQL code. Oracle

SQL Developer has the feature for formatting the SQL code. To format the SQL code, right-click in the

statement area, and select Format SQL.

123 | P a g e

Saving SQL Statements

1. From the File menu, select Save or Save As or [CTRL] + [S].

2. In the Save dialog box, enter the appropriate filename. Make sure the extension is .sql or the File

type is selected as SQL Script (*.sql). Click Save.

3. The SQL Worksheet is renamed to the filename that you saved the script as. Make sure you do not

enter any other SQL statements in the same worksheet. To continue with other SQL queries, open a

new worksheet.

124 | P a g e

Section 2: Introduction to Oracle database

In this section you will learn:

 Discuss the basic design, theoretical, and physical aspects of a relational database

 Categorize the different types of SQL statements

 Describe the data set used by the course

125 | P a g e

Lesson 2.1: Discuss the basic design, theoretical, and physical aspects of a relational

database

Relational and Object Relational Database Management Systems

The Oracle server supports both the relational and the object relational database models. The Oracle server

extends the data-modeling capabilities to support an object relational database model that provides object-

oriented programming, complex data types, complex business objects, and full compatibility with the

relational world.

A relational database is a database that conforms to the relational model. A relational database stores data

in a set of simple relations. A relation is a set of tuples. A tuple is an unordered set of attribute values.

The relational model has the following major aspects:

Structures

Primary Key

The primary key constraint uniquely identifies each record in a database table. Primary keys must contain

UNIQUE values. A primary key column cannot contain NULL values.

Foreign Key

A foreign key in one table points to a primary key in another table.

Table

A table is a two-dimensional representation of a relation in the form of rows (tuples) and columns (attributes).

Each row in a table has the same set of columns. A relational database is a database that stores data in

relations (tables). For example, a relational database could store information about company employees in an

employee table, a department table, and a salary table.

126 | P a g e

Relational database example:

The relational model is the basis for a relational database management system (RDBMS). Essentially, an

RDBMS moves data into a database, stores the data, and retrieves it so that it can be manipulated by

applications. An RDBMS distinguishes between the following types of operations:

Logical operations

In this case, an application specifies what content is required. For example, an application requests an

employee name or adds an employee record to a table.

Physical operations

In this case, the RDBMS determines how things should be done and carries out the operation. For example,

after an application queries a table, the database may use an index to find the requested rows, read the data

into memory, and perform many other steps before returning a result to the user. The RDBMS stores and

retrieves data so that physical operations are transparent to database applications.

127 | P a g e

Structured Query Language (SQL)

SQL is a set-based declarative language that provides an interface to a RDBMS such as Oracle Database.

The SQL language is a very large language and can be split into sub languages.

Data Manipulation Language (DML)

The most commonly used language in SQL is the Data Manipulation Language. This is used to

 retrieve the data from the database

 create new data and modify existing data

 remove existing data
Later in this manual we shall return to the DML language.

Data Definition Language (DDL)

This sub language is used to:

 build new database structure i.e. tables

 alter existing structures

 delete existing structure

 give access to the data and security to logon to the database

128 | P a g e

Data Control Language (DCL)

This sub language is used to:

 Grant and revoke permissions

Transaction Control Language (DCL)

This sub language is used to:

 Control new transactions performed against data

PL/SQL

PL/SQL is a procedural extension to Oracle SQL. PL/SQL is integrated with Oracle Database, enabling you to

use all of the Oracle Database SQL statements, functions, and data types. You can use PL/SQL to control the

flow of a SQL program, use variables, and write error-handling procedures

Transactions

An RDBMS must be able to group SQL statements so that they are either all committed, which means they are

applied to the database, or all rolled back, which means they are undone. A transaction is a logical, atomic

unit of work that contains one or more SQL statements.

An illustration of the need for transactions is a funds transfer from a savings account to a checking account.

mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDBEFGD

129 | P a g e

The transfer consists of the following separate operations:

 Decrease the savings account.

 Increase the checking account.

 Record the transaction in the transaction journal.

Oracle Database guarantees that all three operations succeed or fail as a unit. For example, if a hardware

failure prevents a statement in the transaction from executing, then the other statements must be rolled back.

The basic principle of a transaction is "all or nothing": an atomic operation succeeds or fails as a whole.

Data Concurrency

A requirement of a multiuser RDBMS is the control of concurrency, which is the simultaneous access of the

same data by multiple users. Without concurrency controls, users could change data improperly,

compromising data integrity. For example, one user could update a row while a different user simultaneously

updates it.

If multiple users access the same data, then one way of managing concurrency is to make users wait. However,

the goal of a DBMS is to reduce wait time, so it is either nonexistent or negligible. All SQL statements that

modify data must proceed with as little interference as possible. Destructive interactions, which are

interactions that incorrectly update data or alter underlying data structures, must be avoided.

Oracle Database uses locks to control concurrent access to data. A lock is a mechanism that prevents

destructive interaction between transactions accessing a shared resource. Locks help ensure data integrity

while allowing maximum concurrent access to data.

Data Consistency

In Oracle Database, each user must see a consistent view of the data, including visible changes made by a

user's own transactions and committed transactions of other users. For example, the database must prevent

dirty reads, which occur when one transaction sees uncommitted changes made by another concurrent

transaction.

Oracle Database always enforces statement-level read consistency, which guarantees that the data returned

by a single query is committed and consistent with respect to a single point in time. Depending on the

transaction isolation level, this point is the time at which the statement was opened or the time the transaction

began. The Flashback Query feature enables you to specify this point in time explicitly.

The database can also provide read consistency to all queries in a transaction, known as transaction-level read

consistency. In this case, each statement in a transaction sees data from the same point in time, which is the

time at which the transaction began.

mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBADBFCB
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBACGDCA
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDFDBGH

130 | P a g e

131 | P a g e

Lesson 2.2: Overview to Oracle Architecture

A database server is the key to information management. In general, a server reliably manages a large amount

of data in a multiuser environment so that users can concurrently access the same data. A database server

also prevents unauthorized access and provides efficient solutions for failure recovery.

Database and Instance

An Oracle database server consists of a database and at least one database instance (commonly referred to

as simply an instance). Because an instance and a database are so closely connected, the term Oracle database

is sometimes used to refer to both instance and database. In the strictest sense the terms have the following

meanings:

Database

A database is a set of files, located on disk, that store data. These files can exist independently of a database

instance.

Database instance

An instance is a set of memory structures that manage database files. The instance consists of a shared

memory area, called the system global area (SGA), and a set of background processes. An instance can exist

independently of database files.

The diagram shows a database and its instance. For each user connection to the instance, the application is

run by a client process. Each client process is associated with its own server process. The server process has

its own private session memory, known as thee program global area (PGA).

mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBAHBIJA
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDHBJHG
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBAFGFCJ
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBAICBIA
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDBJJGB
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBADEIIA
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDCHGAJ

132 | P a g e

The physical database structures are the files that store the data.

Data files

Every Oracle database has one or more physical data files, which contain all the database data. The data of

logical database structures, such as tables and indexes, is physically stored in the data files.

Control files

Every Oracle database has a control file. A control file contains metadata specifying the physical structure of

the database, including the database name and the names and locations of the database files.

Online redo log files

mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDHJCCC
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDDFGEC

133 | P a g e

Every Oracle Database has an online redo log, which is a set of two or more online redo log files. An online

redo log is made up of redo entries (also called redo records), which record all changes made to data.

Instance Memory Structures

Oracle Database creates and uses memory structures for purposes such as memory for program code, data

shared among users, and private data areas for each connected user. The following memory structures are

associated with an instance:

System Global Area (SGA)

The SGA is a group of shared memory structures that contain data and control information for one database

instance. Examples of SGA components include cached data blocks and shared SQL areas.

Program Global Areas (PGA)

A PGA is a memory region that contains data and control information for a server or background process.

Access to the PGA is exclusive to the process. Each server process and background process has its own PGA.

mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CBAIJCIB
mhtml:file://C:/Data/Introduction%20to%20Oracle%20Database%20-%2011g%20Release%202%20(11_2).mht!https://docs.oracle.com/cd/E29597_01/server.1111/e25789/glossary.htm#CHDIHFBC

134 | P a g e

Overview of Schemas and Common Schema Objects

A schema is a collection of database objects. A schema is owned by a database user and has the same name

as that user. Schema objects are the logical structures that directly refer to the database's data. Schema

objects include structures like tables, views, and indexes

Some of the most common schema objects are defined in the following section.

Tables

Tables are the basic unit of data storage in an Oracle database. Database tables hold all user-accessible data.

Each table has columns and rows.

Indexes

Indexes are optional structures associated with tables. Indexes can be created to increase the performance of

data retrieval. Just as the index in a book helps you quickly locate specific information, an Oracle index

provides an access path to table data. When processing a request, Oracle can use some or all of the available

indexes to locate the requested rows efficiently. Indexes are useful when applications frequently query a table

for a range of rows (for example, all employees with a salary greater than 1000 dollars) or a specific row.

Indexes are created on one or more columns of a table. After it is created, an index is automatically maintained

and used by Oracle. Changes to table data (such as adding new rows, updating rows, or deleting rows) are

automatically incorporated into all relevant indexes with complete transparency to the users.

Views

Views are customized presentations of data in one or more tables or other views. A view can also be

considered a stored query. Views do not actually contain data. Rather, they derive their data from the tables

on which they are based, referred to as the base tables of the views.

Like tables, views can be queried, updated, inserted into, and deleted from, with some restrictions. All

operations performed on a view actually affect the base tables of the view.

Views provide an additional level of table security by restricting access to a predetermined set of rows and

columns of a table. They also hide data complexity and store complex queries.

Synonyms

A synonym is an alias for any table, view, materialized view, sequence, procedure, function, package, type,

Java class schema object, user-defined object type, or another synonym. Because a synonym is simply an alias,

it requires no storage other than its definition in the data dictionary.

135 | P a g e

Section 3: Retrieve Data using the SQL SELECT Statement

In this section you will learn:

 The capabilities of SQL SELECT statements

 Generate a report of data from the output of a basic SELECT statement

 Select All Columns

 Select Specific Columns

 Column Heading Defaults

 Arithmetic Operators

 Understand Operator Precedence

 DESCRIBE command to display the table structure

 Oracle Data dictionary

136 | P a g e

Lesson 3.1: Capabilities of SELECT Statement

The SELECT statement is used to retrieve data from the Oracle database. It is possible to reference either

tables directly or indirectly using views in our SELECT statements. The SELECT statements are the most

commonly used command in the SQL language, therefore they are an appropriate concept to cover right at

the start of using the SQL language.

With a SELECT statement, you can use the following capabilities:

Projection

Select the columns in a table that are returned by a query. Select as few or as many of the columns as required.

137 | P a g e

Selection

Select the rows in a table that are returned by a query. Various criteria can be used or restrict the rows that

are retrieved.

Joining

Bring together data that is stored in different tables by specifying the link between them.

138 | P a g e

Lesson 3.2: Basic SELECT statements

SELECT statements consist of several keywords or commands, some of these are mandatory while others are

optional.

The SELECT statement require a minimum of 2 keywords

SELECT Lists the columns or expressions to be returned

FROM Lists the tables or views that the columns or expressions listed in the SELECT command.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table;

SQL Example:

SELECT last_name,

 salary

FROM employees;

Query Results: LAST_NAME SALARY

King 24000

Kochhar 17000

De Haan 17000

Hunold 9000

Ernst 6000

…

Explanation: This statement lists last_name and salary columns from the employees table.

Code file: Code3_2_1.sql

Note 1:

Throughout this course, the words keyword, clause, and statement are used as follows:

• A keyword refers to an individual SQL element.

For example, SELECT and FROM are keywords.

• A clause is a part of a SQL statement.

139 | P a g e

For example, SELECT employee_id, last_name, and so on is a clause.

• A statement is a combination of two or more clauses.

For example, SELECT * FROM employees is a SQL statement.

Note 2:

 SQL statements are not case-sensitive.

 SQL statements can be entered on one or more lines.

 Keywords cannot be abbreviated or split across lines.

 Clauses are usually placed on separate lines.

 Indents are used to enhance readability.

 In SQL Developer, SQL statements can optionally be terminated by a semicolon (;). Semicolon

140 | P a g e

Lesson 3.3: SELECT all columns

It is possible to select all of the columns rather than specifying individual columns using the “*”.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table;

SQL Example:

SELECT *

FROM employees;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL

100 Steven King SKING

101 Neena Kochhar NKOCHHAR

102 Lex De Haan LDEHAAN

103 Alexander Hunold AHUNOLD

Explanation: This statement select all of the columns from the EMPLOYEES table

Code file: Code3_3_1.sql

141 | P a g e

Lesson 3.4: Column Aliases

By default the headings display by a select will display the column name or the expression. It is possible to

provide an alias to each of the columns or expressions to replace the default heading

Syntax: SELECT *|{[DISTINCT] column|expression [as][alias],...}

FROM table;

SQL Example:

SELECT EMPLOYEE_ID as "Employee No",

 LAST_NAME as Name

FROM employees;

Query Results: Employee No NAME

174 Abel

166 Ande

130 Atkinson

105 Austin

204 Baer

…

Explanation: This statement aliases Employee_ID to Employee No.

Code file: Code3_4_1.sql

If we place the alias name in double quotes it is literal translated. This means that the alias could be more

than one word and use different cases. If the alias is not in double quote it can only be one word or it would

require an underscore to join multiple words.

142 | P a g e

Lesson 3.5: Retrieving Distinct Values

When building a SELECT statement it is possible to use the DISTINCT keyword to only return the unique values

from a column.

Syntax: SELECT DISTINCT column_name

FROM table or view;

SQL Example: SELECT DISTINCT JOB_ID

FROM employees;

Query Results: JOB_ID

AC_ACCOUNT

AC_MGR

AD_ASST

AD_PRES

AD_VP

…

Explanation: This statement selects the JOB_ID column from the EMPLOYEES table. The

DISTINCT returns one instance of each job id

File Code3_5_1.sql

143 | P a g e

Lesson 3.6: Literal Strings

In the SQL language single quotes are more commonly used than double quotes. Single quotes are known as

literal strings which mean the contents of the single quotes are literally translated. For example, if text is

placed in single quotes in lower case it will be used as lower case in expressions. This is important when we

are searching for data as we may search for a value using a literal string in lower case, but values required are

held in the database in upper case. For example: if we search for ‘Jones’ but the database column hold ‘JONES’

we shall not find a match.

Literal strings are used with text and dates in SQL.

Syntax: SELECT column_or_expression1 [as] [alias][“alias”]

FROM table or view;

SQL Example: SELECT last_name ||' is a '||job_id AS "Employee Details"

FROM employees;

Query Results: Employee Details

Abel is a SA_REP

Ande is a SA_REP

Atkinson is a ST_CLERK

Austin is a IT_PROG

 …….

Explanation: This statement returns the last name and salary for each employee are concatenated

with a literal, to give the returned rows more meaning

File: Code3_5_1.sql

144 | P a g e

Lesson 3.7: Introduction to SQL Operators

In SQL statements we can use various operators to manipulate the data that is return.

Concatenation Operator

This operator allows columns or expression to attached together to create one string.

Arithmetic Operator

These operators allow basic arithmetic functionality to be performed. For example, multiplication, addition

etc.

Logical Operators

These operators allow multiple conditions to be combined. For example, we may wish to display the name of

employees would work in admin department and earn more than £12000. We use logical operators to

combine the conditions of working in admin department and earning more than £12000.

Comparison Operators

These operators allow compare multiple values and return a Boolean result. For example, we may wish to

show employees who have a job title of manager. We can use a comparison operator to check if the value of

manager exists in the job title column.

Set Operators

These operators allow multiple data sets to be combined to create one data set. For example, we may have

two sales tables one for the north and one for the south. The set operators can be used to combine the two

sales tables to create one sales table.

145 | P a g e

Concatenation Operator

This operator allows columns or expression to attached together to create one string. You can link columns to

other columns, arithmetic expressions, or constant values to create a character expression by using the

concatenation operator (||). Columns on either side of the operator are combined to make a single output

column.

Syntax: SELECT column|expression || column|expression as [alias],...}

FROM table;

SQL Example:

SELECT last_name ||' is a '||job_id AS "Employee Details"

FROM employees;

Query Results: Employee Details

Abel is a SA_REP

Ande is a SA_REP

Atkinson is a ST_CLERK

Austin is a IT_PROG

 …….

Explanation: This statement concatenates last_name and job_id columns in the employees table.

Code file: Code3_6_1.sql

146 | P a g e

Alternative Quote (q) Operator

Many SQL statements use character literals in expressions or conditions. If the literal itself contains a single

quotation mark, you can use the quote (q) operator and select your own quotation mark delimiter. You can

choose any convenient delimiter, single-byte or multibyte, or any of the following character pairs: [], { }, (),

or < >.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table;

SQL Example:

SELECT department_name || ' Department' || q'['s Manager

Id:]'|| manager_id

 AS "Department and Manager"

FROM departments;

Query Results: Department and Manager

Administration Department's Manager Id: 200

Marketing Department's Manager Id: 201

Purchasing Department's Manager Id: 114

Human Resources Department's Manager Id: 203

Shipping Department's Manager Id: 121

…

Explanation: This statement shows the string contains a single quotation mark, which is normally

interpreted as a delimiter of a character string. By using the q operator, however,

brackets [] are used as the quotation mark delimiters. The string between the

brackets delimiters is interpreted as a literal character string.

Code file: Code3_6_2.sql

147 | P a g e

Arithmetic Operator

These operators allow basic arithmetic functionality to be performed. For example, multiplication, addition

etc.

There are 4 arithmetic operators:

Operator Name

+ addition

- subtraction

/ divide

* multiplication

Syntax: SELECT *|{[DISTINCT] column|expression * - / + [alias],...}

FROM table;

SQL Example:

SELECT last_name ,(salary * 1.02)/12 as NewSalary

FROM employees;

Query Results: LAST_NAME NEWSALARY

King 2040

Kochhar 1445

De Haan 1445

Hunold 765

Ernst 510

….

Explanation: This statement uses arithmetic operators to calculate an increased monthly salary

for each employee.

Code file: Code3_6_3.sql

148 | P a g e

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are evaluated first. If

operators in an expression are of the same priority, then evaluation is done from left to right. You can use

parentheses to force the expression that is enclosed by the parentheses to be evaluated first.

Rules of Precedence:

• Multiplication and division occur before addition and subtraction.

• Operators of the same priority are evaluated from left to right.

• Parentheses are used to override the default precedence or to clarify the statement.

149 | P a g e

Lesson 3.8: DESCRIBE statement

In SQL Developer, you can display the structure of a table by using the DESCRIBE command. The command

displays the column names and the data types, and it shows you whether a column must contain data (that

is, whether the column has a NOT NULL constraint).In the syntax, table name is the name of any existing

table, view, or synonym that is accessible to the user.

Syntax DESCRIBE table|View| synonym;

SQL Example

DESCRIBE employees;

Query Results DESCRIBE employees

Name Null Type

-------------- -------- ------------

EMPLOYEE_ID NOT NULL NUMBER(6)

FIRST_NAME VARCHAR2(20)

LAST_NAME NOT NULL VARCHAR2(25)

EMAIL NOT NULL VARCHAR2(25)

PHONE_NUMBER VARCHAR2(20)

HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHAR2(10)

SALARY NUMBER(8,2)

COMMISSION_PCT NUMBER(2,2)

MANAGER_ID NUMBER(6)

DEPARTMENT_ID NUMBER(4)

Explanation: This statement displays the structure of the employees table.

Code file: Code3_7_1.sql

150 | P a g e

Lesson 3.9: Oracle Data Dictionary

The Oracle Database can contain many objects such as tables, views, indexes etc. It may be necessary for us

to find out information about the object. Therefore, we have the Oracle Data Dictionary which contains

metadata i.e. data about the Oracle database. There are many data dictionary tables or view and the number

that we have access to will depend on our role. For example, in Oracle 9i a DBA may have access to

approximately 1700 tables or views while a developer may have access to approximately 600 tables. The vast

majority of these tables or views may never be used by DBA or Developers.

Most of the tables used will have the following prefixes:

• USER_

• ALL_

• DBA

• V$

USER_ tables or views show information about objects owned by the current user.

ALL_ tables or views show information about objects owned by the current user or that the current user has

been given access to.

DBA_ table or views show information about all the object in the database.

V$ views are used by DBA’s primarily as part of tuning the Oracle database.

DICT View

The DICT view shows a list of the all the table you are able to access. As many of the name may not be that

easy to interpret a comments field with a description of the table or view is provided.

As there are many tables or views described in the DICT view it would be advisable to provide a where clause

condition to restrict the data.

For example:

SELECT *

FROM dict

WHERE table_name LIKE '%TABLES%'

USER_TABLES : Description of the user's own relational tables

USER_OBJECT_TABLES :Description of the user's own object tables

USER_ALL_TABLES :Description of all object and relational tables owned by the all users

For example, the following shows all user tables:

SELECT *

FROM USER_TABLES

151 | P a g e

Section 4: Restrict and Sort Data

• Write queries that contain a WHERE clause to limit the output retrieved
• List the comparison operators and logical operators that are used in a WHERE clause
• Describe the rules of precedence for comparison and logical operators
• Use character string literals in the WHERE clause
• Write queries that contain an ORDER BY clause to sort the output of a SELECT statement
• Sort output in descending and ascending order

152 | P a g e

Lesson 4.1 : WHERE clause

The WHERE Clause is one of the main conditions applied to a SQL statement. The WHERE clause is written

after the FROM clause in the statement. You can restrict the rows that are returned from the query by using

the WHERE clause. A WHERE clause contains a condition that must be met and it directly follows the FROM

clause. If the condition is true, the row meeting the condition is returned.

The WHERE clause can compare values in columns, literal, arithmetic expressions, or functions. It consists of

three elements:

1. Column name
2. Comparison condition
3. Column name, constant, or list of values

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary

FROM employees

WHERE DEPARTMENT_ID = 90;

Query Results: LAST_NAME SALARY

King 24000

Kochhar 17000

De Haan 17000

…

Explanation: This statement lists last_name and salary columns from the employees table for

department ID 90.

Code file: Code4_1_1.sql

153 | P a g e

Lesson 4.2: Comparison operators and logical operators

Comparison operators are used to limit the data returned. Comparison operators are made against columns

within the tables referenced in the FROM clause.

Operator Name

= equals

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

IS NULL Is a null value

LIKE Match a character pattern

IN(set) Match any of a list of values

BETWEEN…AND… Between two values (inclusive)

'<>', '!=' or '^=' Not Equal to

Equals

The equals '=' sign is used when there is an exact match between one condition and another

Syntax SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example

SELECT last_name, salary

FROM employees

WHERE DEPARTMENT_ID = 90;

Query Results LAST_NAME SALARY

King 24000

Kochhar 17000

De Haan 17000

…

Explanation: This statement lists last_name and salary columns from the employees table for

department ID 90.

Code file: Code4_2_1.sql

154 | P a g e

Not Equals

Not equals is used when searching for data does not equal a certain condition. This can be used for both text

and numerical comparisons. The text match needs to be in the same case as the column value. The condition

is can use these signs '<>', '!=' or '^='

Syntax SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example

SELECT last_name, salary

FROM employees

WHERE DEPARTMENT_ID <> 90;

Query Results LAST_NAME SALARY

Hunold 9000

Ernst 6000

Austin 4800

Pataballa 4800

Lorentz 4200

…

Explanation: This statement lists last_name and salary columns from the employees table for

department ID not equal 90.

Code file: Code4_2_2.sql

155 | P a g e

Greater Than

The greater than sign '>' is used to query back data which is above a numerical value.

Greater Than or Equal To

The greater than or equal to sign '>=' is used in the same way as greater than but will also compare with the

condition value.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary

FROM employees

WHERE salary >=9000;

Query Results: LAST_NAME SALARY

King 24000

Kochhar 17000

De Haan 17000

Hunold 9000

Greenberg 12008

…

Explanation: This statement lists last_name and salary columns from the employees table for

salary >=9000.

Code file: Code4_2_3.sql

156 | P a g e

Less Than

The less than sign '<' is used to query back data which is below a numerical value.

Less Than or Equal To

'<=' As above but compares the current value and any value below.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary

FROM employees

WHERE salary <=9000;

Query Results: LAST_NAME SALARY

Hunold 9000

Ernst 6000

Austin 4800

Pataballa 4800

Lorentz 4200

…

Explanation: This statement lists last_name and salary columns from the employees table for

salary <=9000.

Code file: Code4_2_4.sql

157 | P a g e

IN

The IN command is used to compare multiple number of characters in one condition instead of using several

equals conditions. The condition defined using the IN operator is also known as the membership

condition.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary, department_id

FROM employees

WHERE DEPARTMENT_ID IN (90,70,10);

Query Results: LAST_NAME SALARY DEPARTMENT_ID

Whalen 4400 10

Baer 10000 70

King 24000 90

Kochhar 17000 90

...

Explanation: This statement lists last_name and salary columns from the employees table for

department ID 10, 70 and 90.

Code file: Code4_2_5.sql

NOT IN

This condition does the opposite of IN and brings back rows that do not satisfy the conditions made.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary, department_id

FROM employees

WHERE department_id NOT IN (90,70,10);

Query Results: LAST_NAME SALARY DEPARTMENT_ID

Hunold 9000 60

158 | P a g e

Ernst 6000 60

Austin 4800 60

Pataballa 4800 60

Lorentz 4200 60

…

Explanation: This statement lists last_name and salary columns from the employees table for

department ID not in 10, 70 and 90.

Code file: Code4_2_6.sql

159 | P a g e

BETWEEN

The between condition can be used for dates and numerical comparisons to return data that occurs between

the two conditions.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary

FROM employees

WHERE salary BETWEEN 9000 AND 15000;

Query Results: LAST_NAME SALARY

Hunold 9000

Greenberg 12008

Faviet 9000

Raphaely 11000

Russell 14000

…

Explanation: This statement lists last_name and salary columns from the employees table for

salary is in the range of 9000 to 15000.

Code file: Code4_2_7.sql

NOT BETWEEN

NOT BETWEEN will query for data that is not included in the between statement.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, salary

FROM employees

WHERE salary NOT BETWEEN 9000 AND 15000;

Query Results: LAST_NAME SALARY

King 24000

Kochhar 17000

De Haan 17000

Ernst 6000

160 | P a g e

Austin 4800

…

Explanation: This statement lists last_name and salary columns from the employees table for

salary is in the range of 9000 to 15000.

Code file: Code4_2_8.sql

LIKE

The like condition is used to compare text fields. The like condition can be used with the wildcard character

'%' or '_' . '%' represents 0 to more characters and the '_' represents individual characters.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name

FROM employees

WHERE first_name like 'S%';

Query Results: FIRST_NAME LAST_NAME

Sundar Ande

Shelli Baida

Sarah Bell

Shelley Higgins

Steven King

…

Explanation: The SELECT statement returns the first name from the EMPLOYEES table for

any employee whose first name begins with the letter “S.” Note the uppercase “S.”

Consequently, names beginning with a lowercase “s” are not returned.

Code file: Code4_2_9.sql

The LIKE operator can be used as a shortcut for some BETWEEN comparisons.

Syntax SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

161 | P a g e

SQL Example

SELECT last_name, hire_date

FROM employees

WHERE hire_date LIKE '%02';

Query Results LAST_NAME HIRE_DATE

Greenberg 17-AUG-02

Faviet 16-AUG-02

Raphaely 07-DEC-02

Mavris 07-JUN-02

Baer 07-JUN-02

…

Explanation: This statement lists last_name and salary columns from the employees table.

Code file: Code4_2_10.sql

NOT LIKE

The condition 'NOT LIKE' will return the every except the matches within the condition.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name

FROM employees

WHERE first_name NOT LIKE 'S%';

Query Results: FIRST_NAME LAST_NAME

Ellen Abel

Mozhe Atkinson

David Austin

Hermann Baer

Amit Banda

…

Explanation: The SELECT statement returns the first name from the EMPLOYEES table for

any employee whose first name does not begin with the letter S

Code file: Code4_2_11a.sql

162 | P a g e

Combining Wildcard Characters

The % and _ symbols can be used in any combination with literal characters.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name

FROM employees

WHERE last_name LIKE '_o%';

Query Results: FIRST_NAME LAST_NAME

Karen Colmenares

Louise Doran

Tayler Fox

Charles Johnson

Vance Jones

…

Explanation: The SELECT statement returns the first name from the EMPLOYEES table for

any employee whose last name first letter is anything, second letter is o and has

anything after it

Code file: Code4_2_11b.sql

163 | P a g e

IS NULL

The 'IS NULL' condition will bring back data where the relevant column referenced in the WHERE clause is null.

The NULL conditions include the IS NULL condition and the IS NOT NULL condition. The IS NULL condition tests

for nulls. A null value means that the value is unavailable, unassigned, unknown, or inapplicable. Therefore,

you cannot test with =, because a null cannot be equal or unequal to any value.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct

FROM employees

WHERE commission_pct IS NULL;

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT

Steven King

Neena Kochhar

Lex De Haan

Alexander Hunold

…

Explanation: The SELECT statement returns the first name, last name, and commission for all

employees who are not entitled to receive a commission

Code file: Code4_2_12a.sql

IS NOT NULL

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct

FROM employees

WHERE commission_pct IS NOT NULL;

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT

John Russell 0.4

Karen Partners 0.3

Alberto Errazuriz 0.3

Gerald Cambrault 0.3

…

164 | P a g e

Explanation: The SELECT statement returns the first name, last name and commission for all

employees who are entitled to receive a commission

Code file: Code4_2_12b.sql

165 | P a g e

Logical Operators

To create multiple conditions within a WHERE clause a logical operator is required to separate the conditions.

Logical operators consist of AND, OR and NOT. The result of each condition is either TRUE or FALSE depending

if the condition is satisfied.

Operator Name

AND Returns TRUE if both component conditions are true

OR Returns TRUE if either component condition is true

NOT Returns TRUE if the condition is false

AND

The AND operator is the most used operator. The AND operator allows the user to add as many conditions to

a query as they want in a sequence.

AND Truth Table

The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct, salary

FROM employees

WHERE commission_pct IS NULL

AND salary >=10000;

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT SALARY

Steven King 24000

Neena Kochhar 17000

Lex De Haan 17000

Nancy Greenberg 12008

…

Explanation: The SELECT statement returns the first name, last name, commission and salary for all

employees who are not entitled to receive a commission and have a salary over 10000

Code file: Code4_2_13a.sql

166 | P a g e

OR

OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct, salary

FROM employees

WHERE commission_pct IS NULL

OR salary >=10000;

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT SALARY

Steven King 24000

Neena Kochhar 17000

Lex De Haan 17000

Alexander Hunold 9000

Bruce Ernst 6000

…

Explanation: The SELECT statement returns the first name, last name, commission and salary for all

employees who are not entitled to receive a commission or have a salary over 10000

Code file: Code4_2_13b.sql

167 | P a g e

NOT

As the name suggest the NOT operator returns anything that does not equal the conditions.

NOT Truth Table

The following table shows the result of applying the NOT operator to a condition:

NOT TRUE FALSE NULL

 FALSE TRUE NULL

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE, and NULL.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct, salary

FROM employees

WHERE last_name NOT LIKE '%A%';

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT SALARY

Steven King 24000

Neena Kochhar 17000

Lex De Haan 17000

Alexander Hunold 9000

Bruce Ernst 6000

…

Explanation: The SELECT statement returns the first name, last name, commission and salary

for all employees whose last name does not start with A

Code file: Code4_2_14.sql

168 | P a g e

Lesson 4.3: Rules of precedence for comparison and logical operators

SQL allows the user to use AND, OR and NOT as often as required. The use of brackets '(' ')' allows the user to

organise the conditions in different ways with different results. The rules of precedence determine the order

in which expressions are evaluated and calculated.

Rules of precedence

Operator Name

1 Arithmetic operators

2 Concatenation operator

3 Comparison conditions

4 IS [NOT] NULL, LIKE, [NOT] IN

5 [NOT] BETWEEN

6 Not equal to

7 NOT logical condition

8 AND logical condition

9 OR logical condition

169 | P a g e

Rules of precedence

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, job_id, salary

FROM employees

WHERE job_id = 'SA_REP'

OR job_id = 'AD_PRES'

AND salary > 15000;

Query Results: LAST_NAME JOB_ID SALARY

King AD_PRES 24000

Tucker SA_REP 10000

Bernstein SA_REP 9500

Hall SA_REP 9000

Olsen SA_REP 8000

…

Explanation:

The first condition is that the job ID is AD_PRES and the salary is greater than 15,000.

The second condition is that the job ID is SA_REP. Therefore, the SELECT statement

reads as follows:

“Select the row if an employee is a president and earns more than 15,000, or if the

employee is a sales representative.”

Code file: Code4_2_15.sql

170 | P a g e

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT last_name, job_id, salary

FROM employees

WHERE (job_id = 'SA_REP'

OR job_id = 'AD_PRES')

AND salary > 15000;

Query Results: LAST_NAME JOB_ID SALARY

King AD_PRES 24000

Explanation:

The first condition is that the job ID is AD_PRES or SA_REP. The second condition is

that the salary is greater than 15,000. Therefore, the SELECT statement reads as

follows:

“Select the row if an employee is a president or a sales representative, and if the

employee earns more than 15,000.”

Code file: Code4_2_16.sql

171 | P a g e

Lesson 4.4: Character string literals

Character strings WHERE clause must be enclosed with single quotation marks (''). Number constants,

however, should not be enclosed with single quotation marks. All character searches are case-sensitive. Use

of singlerow

Functions UPPER and LOWER to override the case sensitivity

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct, salary

FROM employees

WHERE last_name ='King’;

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT SALARY

Janette King 0.35 10000

Steven King 24000

Explanation: The SELECT statement returns the first name, last name, commission and salary

for all employees whose last name is King

Code file: Code4_4_1.sql

172 | P a g e

Lesson 4.5: Date queries

Dates in the WHERE clause must be enclosed with single quotation marks (''). Oracle databases store dates

in an internal numeric format, representing the century, year, month, day, hours, minutes, and seconds. The

default date display is in the DD-MON-RR format.

To check the default date format in effect for your session at any given time, issue the following query against

the NLS_SESSION_PARAMETERS data dictionary view:

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT *

FROM nls_session_parameters;

Query Results: NLS_LANGUAGE AMERICAN

NLS_TERRITORY AMERICA

NLS_CURRENCY $

NLS_ISO_CURRENCY AMERICA

NLS_NUMERIC_CHARACTERS .,

NLS_CALENDAR GREGORIAN

NLS_DATE_FORMAT DD-MON-RR

NLS_DATE_LANGUAGE AMERICAN

…

Explanation: The SELECT statement returns the default date format in effect for your session

at any given time

Code file:

Use the ALTER SESSION command to specify a session-level default date format. The following example works

in Oracle8i or higher, and sets the default date format to DD-MON-YYYY:

ALTER SESSION SET NLS_DATE_FORMAT=”DD-MON-YYYY”

173 | P a g e

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, salary, hire_date

FROM employees

WHERE hire_date BETWEEN '01-JAN-2005' AND '31-DEC-2005';

Query Results: FIRST_NAME LAST_NAME SALARY HIRE_DATE

Neena Kochhar 17000 21-SEP-05

David Austin 4800 25-JUN-05

John Chen 8200 28-SEP-05

Ismael Sciarra 7700 30-SEP-05

Shelli Baida 2900 24-DEC-05…

Explanation: The SELECT statement returns the first name, last name, salary and hire date for all

employees whose hire date was in 2005

Code file: Code4_5_1.sql

174 | P a g e

Lesson 4.6 : Use of functions in the WHERE clause and performance considerations

Singlerow functions can be used in the WHERE clause.

Note:

The use of functions in the WHERE clause can have a negative impact on performance as the index may not

be used.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT first_name, last_name, commission_pct, salary

FROM employees

WHERE UPPER(last_name) ='KING’;

Query Results: FIRST_NAME LAST_NAME COMMISSION_PCT SALARY

Janette King 0.35 10000

Steven King 24000

Explanation: The SELECT statement returns the first name, last name, commission and salary

for all employees whose last name is King. The UPPER function override the case

sensitivity.

Code file: Code4_6_1.sql

175 | P a g e

Lesson 4.7: ORDER BY clause

ORDER BY clause allows the user to sort the data into an appropriate order. The ORDER BY clause does not

require that the column which the data is to be sorted by is included in the SELECT list.

The syntax for ORDER BY is

ORDER BY {column, expr, numeric_position} [ASC|DESC]]

The ASC and DESC refer to whether the query returns the sorted column in Ascending or Descending order.

Syntax: SELECT expr

FROM table

[WHERE condition(s)]

[ORDER BY {column, expr, numeric_position} [ASC|DESC]];

SQL Example:

SELECT first_name, last_name, department_id

FROM employees

WHERE last_name NOT LIKE '%A%'

ORDER BY department_id, last_name, first_name;

Query Results: FIRST_NAME LAST_NAME DEPARTMENT_ID

Jennifer Whalen 10

Pat Fay 20

Michael Hartstein 20

Shelli Baida 30

Karen Colmenares 30

…

Explanation: The SELECT statement returns the first name, last name and department id for all

employees whose last name does not start with A. The resultset is sorted by

department id then by last name and then by first name.

Code file: Code4_7_1.sql

176 | P a g e

Sorting by using the column’s numeric position

Syntax: SELECT expr

FROM table

[WHERE condition(s)]

[ORDER BY {column, expr, numeric_position} [ASC|DESC]];

SQL Example:

SELECT first_name, last_name, department_id

FROM employees

WHERE last_name NOT LIKE '%A%'

ORDER BY 3, 2, 1;

Query Results: FIRST_NAME LAST_NAME DEPARTMENT_ID

Jennifer Whalen 10

Pat Fay 20

Michael Hartstein 20

Shelli Baida 30

Karen Colmenares 30

…

Explanation: The SELECT statement returns the first name, last name and department id for all

employees whose last name does not start with A. The resultset is sorted by

department id then by last name and then by first name.

Code file: Code4_7_2.sql

177 | P a g e

Sorting with NULLS

It is possible sort data on a column that contain null values. If the sort is in ascending order the null values are

placed at the end of the result set. If the sort is in descending order the null values are placed at the top of

the result set.

Syntax: SELECT expr

FROM table

[WHERE condition(s)]

[ORDER BY {column, expr, numeric_position} [ASC|DESC]];

SQL Example:

SELECT first_name, last_name, department_id, commission_pct

FROM employees

WHERE last_name LIKE '%A%'

ORDER BY commission_pct;

Query Results: FIRST_NAME LAST_NAME DEPARTMENT_ID COMMISSION_PCT

Sundar Ande 80 0.1

Ellen Abel 80 0.3

David Austin 60

Mozhe Atkinson 50

…

Explanation: The SELECT statement returns the first name, last name and department id for all

employees whose last name starts with A. The resultset is sorted by commission_pct. Nulls

are at the end of the resultset

Code file: Code4_7_3.sql

178 | P a g e

Lesson 4.8: Substitution Variables

By using a substitution variable in place of the exact values in the WHERE clause, you can run the same query

for different values.

You can create reports that prompt users to supply their own values to restrict the range of data returned, by

using substitution variables. You can embed substitution variables in a command file or in a single SQL

statement. A variable can be thought of as a container in which values are temporarily stored. When the

statement is run, the stored value is substituted.

You can use single-ampersand (&) substitution variables to temporarily store values. You can also predefine

variables by using the DEFINE command. DEFINE creates and assigns a value to a variable.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT employee_id, last_name, salary, department_id

FROM employees

WHERE employee_id = &employee_num ;

Query Results:

Explanation: The SELECT statement prompts the user for an employee number

Code file: Code4_8_1.sql

179 | P a g e

Other uses of Substitution Variables

You can use the substitution variables not only in the WHERE clause of a SQL statement, but also as

substitution for column names, expressions, or text.

180 | P a g e

181 | P a g e

Section 5: Single-Row Functions

• Describe the differences between single row and multiple row functions
• Manipulate strings with character function in the SELECT and WHERE clauses
• Manipulate numbers with the ROUND, TRUNC, and MOD functions
• Perform arithmetic with date data
• Manipulate dates with the DATE functions

182 | P a g e

Lesson 5.1: Single row and multiple row functions

Functions are Oracle PL/SQL objects that are created by Oracle and included in the SQL language. They will

return a result that can be used in the SQL statement. Functions can accept arguments which are used to

produce a value to be returned.

It is possible to use SQL functions in SQL and also PL/SQL statements to manipulate and use resultant data.

There are two types of functions:

• Single-row functions

• Multiple-row functions

Single row functions

Single row functions have the following features

• Manipulate data items
• Accept arguments and return one value
• Act on each row that is returned
• Return one result per row
• May modify the data type
• Can be nested
• Accept arguments that can be a column or an expression
• Can be used in WHERE clause and SELECT clause

Syntax

function_name [(arg1, arg2,...)]

Single row functions can be categories as follows

• STRING (Character) Functions
• DATE functions
• NULL functions
• NUMERIC functions
• CONVERSION functions
• MISCELLANEOUS functions

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These functions are also known

as group functions

183 | P a g e

Lesson 5.2: Usage of functions in the SELECT and WHERE clauses

Single-row functions are used to manipulate data items. They accept one or more arguments and return one

value for each row that is returned by the query. Can be used in WHERE clause and SELECT clause

Syntax: function_name [(arg1, arg2,...)]

SQL Example:

SELECT first_name, UPPER(last_name), commission_pct,

salary

FROM employees

WHERE UPPER(last_name) ='KING';

Query Results: FIRST_NAME UPPER(LAST_NAME) COMMISSION_PCT SALARY

Steven KING 24000

Janette KING 0.35 10000

…

Explanation: The SELECT statement returns the first name, last name, commission and salary

for all employees whose last name is King. The UPPER function overrides the case

sensitivity.

Code file: Code5_2_1.sql

184 | P a g e

Lesson 5.3: Manipulate strings with character functions

Function Description Example Result

CONCAT Joins values together SELECT CONCAT('Hello', 'World')

FROM DUAL

HelloWorld

SUBSTR Extracts a string of

determined length

SELECT SUBSTR('HelloWorld',1,5)

FROM DUAL

Hello

LENGTH Shows the length of a string

as a numeric value

SELECT LENGTH('HelloWorld')

FROM DUAL

10

INSTR Finds the numeric position of

a named character

SELECT INSTR('HelloWorld', 'W')

FROM DUAL

6

LPAD Returns an expression left-

padded to the length of n

characters with a character

expression

SELECT LPAD(14000,10,'*') FROM

DUAL

*****14000

RPAD Returns an expression right-

padded to the length of n

characters with a character

expression

SELECT RPAD(14000, 10, '*')

FROM DUAL

14000*****

REPLACE Replace a string with another

string

SELECT REPLACE

('JACK and JUE','J','BL') FROM

DUAL

BLACK and

BLUE

TRIM Trims leading or trailing

characters

SELECT TRIM('H' FROM

'HelloWorld') FROM DUAL

elloWorld

185 | P a g e

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT employee_id, CONCAT(first_name, last_name)AS NAME,

LENGTH (last_name), INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(last_name, -1, 1) = 'n';

Query Results: EMPLOYEE_ID NAME LENGTH(LAST_NAME) Contains

'a'?

102 LexDe Haan 7 5

105 DavidAustin 6 0

110 JohnChen 4 0

112 Jose ManuelUrman 5 4

123 ShantaVollman 7 6

…

Explanation: The SELECT statement returns the first name and last name joined, the length of

the last name, position of a in the last name.

Code file: Code5_3_1.sql

186 | P a g e

Lesson 5.4: Manipulate numbers with the numeric functions

Function Description Example Result

MOD Accept 2 values as

arguments and return

the remainder when the

first value is divided by

the second

SELECT mod(3,2),mod(18,10) FROM

dual;

1 and 8

FLOOR

The FLOOR function

accepts a value as an

argument and rounds

the value down to the

nearest integer value

SELECT FLOOR(15.7) "Floor" FROM DUAL 15

GREATEST Returns the greatest of

the list of exprs

(expressions).

SELECT

GREATEST('HARRY','HARRIOT','HAROLD')

"GREATEST" FROM DUAL;

HARRY

MOD Returns the remainder of

m divided by n. Returns

m if n is 0.

SELECT MOD (26,11) FROM DUAL 4

ROUND Returns n rounded to m

places to the right of the

decimal point

SELECT ROUND (54.339, 2) FROM DUAL; 54.34

TRUNC Returns n truncated to m

decimal places, where m

and n are numeric

arguments.

SELECT TRUNC(15.79,1) "Truncate"

FROM DUAL;

15.7

There are several other numeric functions that can be used in SQL. For example we may require to perform a

trigonometry calculation. The table below lists some of the other functions that may be encountered.

Function Name / Syntax

ABS (value)

ACOS (value)

ASIN (value)

ATAN (value)

COS (value)

COSH (value)

EXP (value)

LOG (value)

POWER (value1, value2))

187 | P a g e

SIGN (value)

SIN (value)

SINH (value)

SQRT (value)

TAN (value)

TANH (value)

Lesson 5.5: Manipulate dates with the date functions

Function Description Example Result

TRUNC Returns the date d with

its time portion

truncated to the time

unit specified by the

format model fmt.

SELECT TRUNC(TO_DATE('27-OCT-

92', 'DD-MON-YY'), 'YEAR')

"First Of The Year"

FROM DUAL;

1992-01-01

SYSDATE

Returns the current date

and time.

SELECT TO_CHAR(SYSDATE, 'MM-

DD-YYYY HH24:MI:SS') NOW FROM

DUAL

04-12-2014

19:13:48

TIMESTAMPADD Adds a date and time

value to the current

timestamp.

SELECT {fn TIMESTAMPADD

(SQL_TSI_DAY, 1, {fn NOW()})}

FROM DUAL;

adds one

day to the

current

NEXT_DAY Returns the date of the

first weekday named by

char that is later than the

date d.

SELECT NEXT_DAY('15-MAR-

92','TUESDAY') "NEXT DAY" FROM

DUAL;

1992-03-17

188 | P a g e

Section 6: Invoke Conversion Functions and Conditional

Expressions

In this section you will:

• Describe implicit and explicit data type conversion
• Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion functions
• Nest multiple functions
• Apply the NVL, NULLIF, and COALESCE functions to data
• Use conditional IF THEN ELSE logic in a SELECT statement

189 | P a g e

Lesson 6.1: Describe implicit and explicit data type conversion

In some cases, the Oracle server receives data of one data type where it expects data of a different data type.

When this happens, the Oracle server can automatically convert the data to the expected data type. This data

type conversion can be done implicitly by the Oracle server or explicitly by the user.

Implicit Data Type Conversion

Oracle server can automatically perform data type conversion in an expression. For example, the expression

hire_date > '01-JAN-90' results in the implicit conversion from the string '01-JAN-90' to a date. Therefore, a

VARCHAR2 or CHAR value can be implicitly converted to a number or date data type in an expression.

For expression evaluation, the Oracle server can automatically convert the following:

NUMBER to VARCHAR2 or CHAR

DATE to VARCHAR2 or CHAR

Explicit Data Type Conversion

Explicit data type conversions are done by using the conversion functions. Conversion functions convert a

value from one data type to another. Generally, the form of the function names follows the convention data

type TO data type. The first data type is the input data type and the second data type is the output.

190 | P a g e

Lesson 6.2: Conversion functions

SQL provides three functions to convert a value from one data type to another

 TO_CHAR

 TO_NUMBER

 TO_DATE

TO_CHAR

The TO_CHAR function will convert either a date or number to a text string. The format of the new string is

dependent on the format argument provided. It is possible to pass the national language to function.

Syntax:

TO_CHAR([date][number][,format][,language])

The format arguments can accept several different codes that can be built up to provide a format mask used

to convert the data. This is especially important for the conversion of dates to characters. In Oracle dates

hold both date and time information however when a date column is selected it is display in the default date

style i.e. DD-Mon-YY 01-JAN-2005. If we require viewing a date in a different format we require converting it

to a string using the TO_CHAR function. Before looking at some examples of working with the TO_CHAR

function we shall consider the codes that can be used.

Codes for Date formats

Code Description

DD The number of the day in a month 1,2,..31

Day The full spelling of a name of the day in the specified case e.g. DAY – MONDAY or Day –

Monday

DY The first 3 character abbreviation for a day e.g. Mon

D The number of the day in a week i.e. 1 – 7. Where Sunday is day 1.

DDD The number of the day in the year i.e. 1 -366

Th Display a day as an ordinal number i.e. 1st, 2nd, 3rd, 4th

J Julian days since 4712BC i.e. 2453524

MM The number of the month in two digit format i.e. 01,02 – 12

Month The full spelling of the name of the month in the specified case e.g. MONTH – MAY or Month

– May

Mon The first 3 character abbreviation for the month in the case specified i.e. MON – JUN or Mon

– Jun

YY The 2 digit year number i.e. 05

YYY The 3 digit year number i.e. 005

191 | P a g e

YYYY The 4 digit year number i.e. 2005

Y,YYY The 4 digit year number with a comma 2,005

Year The full spelling of the year in the specified case e.g. Year – Two Thousand Five or YEAR –

TWO THOUSAND FIVE

IYYY,IYY, IY Displays the years based on the ISO standards for year start date. See below.

RR Displays 2 digit year rounded to a century. If the year in date provide is <50 and current year

is >=50 rounded to next century i.e. 22nd. If the year in date provide is >=50 but the current

year is <50 the century to rounded down. For example current year is 2005 and date

provided is 73 the RR format would use 1973 rather than 2073.

RRRR As per the RR but displays a 4 digit year.

AD or BC AD or BC is added to the format mask for the year provided i.e. 2005 AD

A.D. or B.C. A.D. or B.C. is added to the format mask for the year provided i.e. 2005 A.D.

CC The century for the date provided i.e. 21st century

SCC The century for the date provide with a minus displayed if the century is BC.

Q The Quarter number of the year starting at the 1st January e.g. 1-4

WW The week number of the year i.e. 1 -53

W The week number of the month i.e. 1-5

HH or HH12 The hours display as numbers between 1 -12

HH24 The hours displayed as numbers between 1- 24

MI The minutes displayed as numbers in an hour 1 – 60

SS The seconds displayed as numbers in a minute 1 -60

SSSSS The seconds displays as number of day.

FF The fraction of a second displayed to 6 digit value e.g. 743521

AM or PM AM or PM is added to the selected time

A.M. or

P.M.

A.M. or P.M. is added to the selected time

Sp Spell a number e.g. dd

Fm Fill mode removes and blank spaces from the date picture

TZD

TZH Display the hours offset of the time zone for example +12,-5

TZM Display the minutes offset of the time zone. This is used with the TZH format e.g. TZH:TZM

may return +10:00

TZR Displays the time zone region

It is also possible to place punctuation marks such as full stops, hyphens etc. and spaces in the format mask

for example:

‘ dd-mon-yyyy hh:mi’

In the above table we mentioned that date can use the ISO standard. The ISO 8601 standard determine start

date to use for the current year. It determines if the during the first week of the year most of the days are in

the new or previous year. For example if the first of January is a Friday, Saturday or Sunday then it is included

in the previous year however if the first of January is a Monday, Tuesday, Wednesday or Thursday then the

192 | P a g e

1first of January is part of the new year. There dependent of this the IYYY format may result in a different year

displayed than the YYYY format.

Codes for Number Formats

The table below shows the format codes that can be used when converting numbers to character strings using

the TO_CHAR function.

Code Description

L Display the local currency symbol i.e. £

9 Represents a single digit in a format mask e.g. 9999 = 1234

0 Display a leading or trailing zero in a format mask e.g. 0099 = 0012

, Display a comma in a format mask e.g. 9,999 = 1234

. Display a period in a format mask e.g. 9,999.00 = 1234.00

PR Display negative numbers in brackets e.g. -9999 = <1234>

MI Display negative numbers with a trailing minus

FM Remove any leading or trailing blank values e.g. FM999.99 = 12.1

Usage of TO_CHAR

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT TO_CHAR(hire_date),

 TO_CHAR(hire_date, 'fmdd-Month-YYYY'),

 TO_CHAR(hire_date, 'hh24:mi:ss'),

 TO_CHAR(salary, 'L999,999')

FROM employees;

Query Results: HD1 HD2 HD3 HD4

17-JUN-03 17-June-2003 00:00:00 $24,000

21-SEP-05 21-September-2005 00:00:00 $17,000

13-JAN-01 13-January-2001 00:00:00 $17,000

03-JAN-06 3-January-2006 00:00:00 $9,000

21-MAY-07 21-May-2007 00:00:00 $6,000

 …

193 | P a g e

Explanation: This statement uses the TO_CHAR function to format dates and numbers

Code file: Code6_2_1.sql

194 | P a g e

NLS

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT TO_CHAR (sysdate, 'Day', 'NLS_DATE_LANGUAGE =

French'),

TO_CHAR(1994.50,'C9,999.99', 'NLS_ISO_CURRENCY=France')

FROM dual;

Query Results: Dimanche EUR1,994.50…

Explanation: This statement uses the TO_CHAR function and NLS to format dates and numbers

Code file: Code6_2_2.sql

TO_DATE

The TO_DATE function allows numbers or character strings to be converted to dates. This could be useful

during data loads where dates are held in a different format from standard Oracle date format.

Usage of TO_DATE

Syntax: TO_DATE([text][number][,format][,national_language_optio

n])

SQL Example:

SELECT to_date('01/01/2002','dd/mm/yyyy')

FROM dual;

Query Results: TO_DATE('01/01/2002','DD/MM/YYYY')

01-JAN-02

Explanation: This statement uses the TO_DATE function to format dates

Code file: Code6_2_3.sql

195 | P a g e

TO_NUMBER

The TO_NUMBER function allows characters to be converted into numbers. This could be useful during data

loads where a column is held as a character rather than a number. This could be due to the number having a

currency symbol place in front of it which has converted it to a character string.

Usage of TO_NUMBER

Syntax: TO_NUMBER([text][,format][,national_language_option])

SQL Example:

SELECT to_number('$12,500','L99,999')

 FROM dual

Query Results: TO_NUMBER('$12,500','L99,999')

12500

Explanation: This statement uses the TO_NUMBER function to convert text to number

Code file: Code6_2_4.sql

Other Miscellaneous Conversion Functions

Function Name/Syntax Description

ASCIISTR(string) Accepts a text string and converts it to ASCII characters. New in Oracle 9i.

CAST(value AS datatype) Converts an item into any data type. For example, a number into a varchar2

or a date into a varchar2.

e.g. CAST(1234 AS varchar2(20))

CHARTOROWID(STRING) Converts a text into the ROWID data type.

COMPOSE(STRING) Converts a string to a Unicode string. Can be used to store data that may use

symbols such as acutes, tidle etc. .

SELECT 'ol' || COMPOSE('e' || UNISTR('\0301')) FROM

dual;

DECOMPOSE Converts a Unicode string to a string.

196 | P a g e

Lesson 6.3: Nest multiple functions

Single-row functions can be nested to any depth. Nested functions are evaluated from the innermost level to

the outermost level. Some examples follow to show you the flexibility of these functions.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT TRIM(UPPER(first_name))

FROM employees;

Query Results: TRIM(UPPER(FIRST_NAME))

ELLEN

SUNDAR

MOZHE

DAVID

HERMANN …

Explanation: The SELECT statement returns the trimmed uppercase first name, for all

employees

Code file: Code6_3_1.sql

197 | P a g e

Lesson 6.4: Apply the DECODE, NVL, NULLIF, and COALESCE functions to data

DECODE

The DECODE function is similar to IF statements if other programming languages and it one of the most

commonly used functions in Oracle SQL.

Syntax: DECODE (exp1, search, result

 [search2, result]

 [search3, result]

 ….[,result])

SQL Example:

SELECT region_name,

 decode(region_id,1,'Region A',

 2,'Region B',

 'Region C')

 FROM regions;

Query Results: REGION_NAME REGION

Europe Region A

Americas Region B

Asia Region C

Middle East and Africa Region C

Explanation: The SELECT statement returns Region A if the region id is 1, Region B if the ID is 2

etc

Code file: Code6_4_1.sql

198 | P a g e

NVL

The NVL function is used to return a replacement value when a null value is found. Null values can cause

problems in calculations i.e. a null plus a value will return the result null. Therefore, the NVL function can be

used to ensure the correct result is achieved.

Syntax: NVL(exp1, exp2)

SQL Example:

SELECT last_name,

 salary,

 salary * commission_pct as Total,

 salary * nvl(commission_pct,0) as Total2

FROM employees;

Query Results: LAST_NAME SALARY TOTAL TOTAL2

King 24000 0

Kochhar 17000 0

De Haan 17000 0

Hunold 9000 0

Ernst 6000 0

Explanation: The SELECT statement converts a null to 0 in the Total2 result

Code file: Code6_4_2.sql

199 | P a g e

COALESCE

The coalesced function is similar to using the NVL function. If expression 1 is null, then another specified value

will be returned.

Syntax: Coalesce(exp1,exp2,expn…)

SQL Example:

SELECT last_name, employee_id,

COALESCE(TO_CHAR(commission_pct),TO_CHAR(manager_id),

'No commission and no manager') as Status

FROM employees;

Query Results: LAST_NAME EMPLOYEE_ID STATUS

King 100 No commission and no manager

Kochhar 101 100

De Haan 102 100

Hunold 103 102

Ernst 104 103

…

Explanation: The SELECT statement shows that if the manager_id value is not null, it is

displayed. If the manager_id value is null, then the commission_pct is

displayed. If the manager_id and commission_pct values are null, then “No

commission and no manager” is displayed.

Code file: Code4_2_14.sql

200 | P a g e

NULLIF

The NULLIF function compares two expressions. If they are equal, the function returns a null. If they are not

equal, the function returns the first expression. However, you cannot specify the literal NULL for the first

expression.

Syntax: NULLIF (expr1, expr2)

SQL Example:

SELECT first_name, LENGTH(first_name) "expr1",

last_name, LENGTH(last_name) "expr2",

NULLIF(LENGTH(first_name), LENGTH(last_name)) result

FROM employees;

Query Results: FIRST_NAME expr1 LAST_NAME expr2 RESULT

Ellen 5 Abel 4 5

Sundar 6 Ande 4 6

Mozhe 5 Atkinson 8 5

David 5 Austin 6 5

Hermann 7 Baer 4 7

…

Explanation: The SELECT statement shows that if the length of the first name in the

EMPLOYEES table is compared to the length of the last name in the EMPLOYEES

table. When the lengths of the names are equal, a null value is displayed. When the

lengths of the names are not equal, the length of the first name is displayed.

Code file: Code6_4_4.sql

201 | P a g e

Lesson 6.5: Use conditional CASE statement

The CASE statement in Oracle can be used for the same purpose as the DECODE function.

Simple CASE functions

The simple case statement is very similar to the DECODE statement used in Oracle, the CASE statement will

search for a value and return a different value, it will also return a default value for any search values that do

not match.

Syntax: CASE expr WHEN comparison_expr1 THEN return_expr1

[WHEN comparison_expr2 THEN return_expr2

WHEN comparison_exprn THEN return_exprn

ELSE else_expr]

END;

SQL Example:

SELECT first_name,

 last_name,department_id,

 (CASE department_id

 WHEN 90 THEN 'SOUTH ENGLAND'

 WHEN 20 THEN 'NORTH ENGLAND'

 ELSE 'SCOTLAND'

 END) AS AREA

 FROM employees;

Query Results: FIRST_NAME LAST_NAME DEPARTMENT_ID AREA

Steven King 90 SOUTH ENGLAND

Neena Kochhar 90 SOUTH ENGLAND

Lex De Haan 90 SOUTH ENGLAND

Alexander Hunold 60 SCOTLAND

Bruce Ernst 60 SCOTLAND

…

Explanation: The SELECT uses a CASE statement to evaluate the department ID and return a

department name.

Code file: Code6_5_1.sql

202 | P a g e

Searched CASE functions

The searched case statement looks more like an IF statement and allows us to place logical conditionality on

searches.

Syntax: CASE WHEN comparison_expr1 THEN return_expr1

[WHEN comparison_expr2 THEN return_expr2

WHEN comparison_exprn THEN return_exprn

ELSE else_expr]

END;

SQL Example:

SELECT first_name,

 last_name,

 salary,

 CASE WHEN salary >= 4000

 AND salary <=20000 THEN 23

 WHEN salary>20000 THEN 40

 ELSE 0

 END AS TAX_RATE

 FROM employees

Query Results: FIRST_NAME LAST_NAME SALARY TAX_RATE

Steven King 24000 40

Neena Kochhar 17000 23

Lex De Haan 17000 23

Alexander Hunold 9000 23

Bruce Ernst 6000 23

…

Explanation: The SELECT statement uses a searched case to determine the tax rate.

Code file: Code6_5_2.sql

203 | P a g e

Section 7: Aggregate Data Using the Group Functions

In this section you will:

• Use the aggregation functions to produce meaningful reports
• Divide the retrieved data in groups by using the GROUP BY clause
• Exclude groups of data by using the HAVING clause

Lesson 7.1: Aggregation functions

Unlike single-row functions, group functions operate on sets of rows to give one result per group. These sets

may comprise the entire table or the table split into groups. Group functions are used to carry out aggregating

of data. This is done through the use of aggregating functions, GROUP BY clause, the HAVING clause and

extensions to the GROUP clause, ROLLUP, CUBE and GROUPING SETS.

Aggregation Functions

An aggregate function summarizes the results of an expression over a number of rows, returning a single value.

Aggregate functions are calculations.

Syntax :

aggregate_function ([DISTINCT | ALL] expression)

aggregate_function -

Gives the name of the function – e.g SUM, COUNT, etc

DISTINCT -

Specifies that the aggregate function should consider only distinct values of the argument expression

ALL -

Specifies that the aggregate function should consider all values, including duplicate values.

expression -

 Specifies a column, or any other expression, on which you want to perform aggregation.

204 | P a g e

SUM

Returns the sum of values in a column or expression over the rows returned by the query

Syntax: SUM(column_expr)

SQL Example:

SELECT sum(salary)

FROM employees;

Query Results: SUM(SALARY)

691416

Explanation: The SELECT statement returns the sum of the salary field

Code file: Code7_1_1.sql

AVG

Returns the average value of a column or expression over the rows returned by a query.

Syntax: AVG(column_expr)

SQL Example:

SELECT AVG(salary)

FROM employees;

Query Results: 6461.831775700934579439252336448598130841

Explanation: The SELECT statement returns the average of the salary field

Code file: Code7_1_1.sql

205 | P a g e

COUNT

Returns the number of values in a column or expression over the rows returned by the query.

Syntax: COUNT([DISTINCT] column_expr)

SQL Example:

SELECT count(employee_id)

FROM employees;

Query Results: COUNT(EMPLOYEE_ID)

107

Explanation: The SELECT statement returns the count of the employee id field

Code file: Code7_1_1.sql

MAX / MIN

Returns the highest (MAX) or lowest (MIN) of values in a column or expression over the rows returned by the

query

Syntax: MAX(column_expr)

MIN(column_expr

SQL Example:

SELECT MAX(salary), MIN(SALARY)

FROM employees;

Query Results: MAX(SALARY) MIN(SALARY)

24000 2100

Explanation: The SELECT statement returns the highest and lowest salary

Code file: Code7_1_1.sql

206 | P a g e

Lesson 7.2: GROUP BY clause

The GROUP BY clause, groups a result set into multiple groups and then produces a single row of summary

information for each group. The GROUP BY clause does not require the GROUP BY field to be in the SELECT

list. The GROUP BY clause is used when referencing columns other than the aggregate function columns.

Syntax: SELECT column, group_function(column)

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[ORDER BY column]

SQL Example:

SELECT department_id, AVG(salary)

FROM employees

GROUP BY department_id;

Query Results: DEPARTMENT_ID AVG(SALARY)

100 8601.3333333333333

30 4150

 7000

90 19333.33333333333333333

…

207 | P a g e

Explanation: The SELECT statement returns the department number and the average salary

for each department

Code file: Code7_2_1.sql

Grouping by More than One Column

Sometimes you need to see results for groups within groups. The diagram shows a report that displays the

total salary that is paid to each job title in each department.

Syntax: SELECT column, group_function(column)

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[ORDER BY column];

SQL Example:

SELECT department_id dept_id, job_id, SUM(salary)

FROM employees

GROUP BY department_id, job_id

ORDER BY department_id;

208 | P a g e

Query Results: DEPT_ID JOB_ID SUM(SALARY)

10 AD_ASST 4400

20 MK_MAN 13000

20 MK_REP 6000

30 PU_CLERK 13900

30 PU_MAN 11000…

Explanation: The SELECT statement shows how the rows are grouped by the department

number and secondly by job ID. The salary is summed per group.

Code file: Code7_2_4.sql

209 | P a g e

Lesson 7.3: HAVING clause

The having clause is associated with the group by clause. The HAVING clause is used to put a filter on the

groups created by the GROUP BY clause. If a query has a HAVING clause along with a GROUP BY clause the

result set will need to satisfy the conditions placed within the HAVING clause

Syntax: SELECT column, group_function

FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[HAVING group_condition]

[ORDER BY column];

SQL Example:

SELECT department_id dept_id, job_id, SUM(salary)

FROM employees

GROUP BY department_id, job_id

HAVING SUM(SALARY) > 10000

ORDER BY department_id;

Query Results: DEPT_ID JOB_ID SUM(SALARY)

20 MK_MAN 13000

30 PU_CLERK 13900

30 PU_MAN 11000

50 SH_CLERK 64300

50 ST_CLERK 55700

…

Explanation: The SELECT statement displays the dept ID, job ID and total monthly

salary for each job that has a total payroll exceeding 10,000.

Code file: Code7_3_1.sql

210 | P a g e

Lesson 7.4:Introduction of Analytical Functions

Oracle has enhanced SQL's analytical processing capabilities by introducing a new family of analytic SQL

functions. These analytic functions enable you to calculate:

• Rankings and percentiles
• Moving window calculations
• Lag/lead analysis
• First/last analysis
• Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles. Moving window calculations

allow you to find moving and cumulative aggregations, such as sums and averages. Lag/lead analysis enables

direct inter-row references so you can calculate period-to-period changes. First/last analysis enables you to

find the first or last value in an ordered group.

RANK

RANK calculates the rank of a value in a group of values. Rows with equal values for the ranking criteria receive

the same rank. Oracle then adds the number of tied rows to the tied rank to calculate the next rank. Therefore,

the ranks may not be consecutive numbers.

Syntax :

RANK (expr [, expr]...) WITHIN GROUP

(ORDER BY

 expr [DESC | ASC] [NULLS { FIRST | LAST }]

 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...

SQL Example:

SELECT employee_id,

 department_id,

 Salary,

 RANK() OVER (PARTITION BY department_id ORder by salary

DESC) Rk

FROM employees

WHERE department_id IN (90,50)

ORDER BY department_id,

 salary DESC;

Query Results: EMPLOYEE_ID DEPARTMENT_ID SALARY RK

121 50 8200 1

120 50 8000 2

122 50 7900 3

211 | P a g e

123 50 6500 4

124 50 5800 5

184 50 4200 6

185 50 4100 7

192 50 4000 8

193 50 3900 9

188 50 3800 10

137 50 3600 11

189 50 3600 11

141 50 3500 13

186 50 3400 14

133 50 3300 15

Explanation: The SELECT statement ranks salary by department, if there is a tie the next ranking

skips a number.

Code file: Code7_4_1.sql

DENSE_RANK

DENSE_RANK computes the rank of a row in an ordered group of rows. The ranks are consecutive integers

beginning with 1. The largest rank value is the number of unique values returned by the query. Rank values

are not skipped in the event of ties. Rows with equal values for the ranking criteria receive the same rank.

Syntax: DENSE_RANK (expr [, expr]...) WITHIN GROUP

(ORDER BY expr [DESC | ASC] [NULLS { FIRST | LAST }]

 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]

SQL Example:

SELECT employee_id,

 department_id,

 Salary,

 DENSE _RANK() OVER (PARTITION BY department_id ORder by

salary DESC) Rk

FROM employees

WHERE department_id IN (90,50)

ORDER BY department_id,

 salary DESC;

Query Results: EMPLOYEE_ID DEPARTMENT_ID SALARY RK

121 50 8200 1

120 50 8000 2

212 | P a g e

122 50 7900 3

123 50 6500 4

124 50 5800 5

184 50 4200 6

185 50 4100 7

192 50 4000 8

193 50 3900 9

188 50 3800 10

137 50 3600 11

189 50 3600 11

141 50 3500 12

186 50 3400 13

133 50 3300 14

Explanation: The SELECT statement ranks salary by department, if there is a tie the next ranking

continues with next rank number.

Code file: Code7_4_2.sql

SUM Over

SUM Over computes the sum of a column in an ordered group of rows.

Syntax: SUM OVER (expr [, expr]...) WITHIN GROUP

(ORDER BY expr [DESC | ASC] [NULLS { FIRST | LAST }]

 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]

SQL Example:

SELECT employee_id,

 department_id,

 Salary,

 SUM(Salary) OVER (PARTITION BY department_id) Total

FROM employees

WHERE department_id IN (20,30)

ORDER BY department_id,

 salary DESC;

Query Results: EMPLOYEE_ID DEPARTMENT_ID SALARY TOTAL

201 20 13000 19000

202 20 6000 19000

114 30 11000 24900

213 | P a g e

115 30 3100 24900

116 30 2900 24900

117 30 2800 24900

118 30 2600 24900

119 30 2500 24900

Explanation: The SELECT statement sum salary by department

Code file: Code7_4_3.sql

214 | P a g e

Section 8: Display Data from Multiple Tables Using Joins

In this section you will:

• Join Types
• Write SELECT statements to access data from more than one table
• View data that generally does not meet a join condition by using outer joins
• Join a table to itself by using a self-join
• Cross Joins
• Natural joins

215 | P a g e

Lesson 8.1: Overview of joins

Joins are used to extract information from two or more tables. Join queries are different from regular queries

as the FROM clause will contain two or more tables or views and a condition is placed to link the tables.

Joins Types

• Oracle INNER JOIN (or sometimes called simple join)
• Oracle LEFT OUTER JOIN (or sometimes called LEFT JOIN)
• Oracle RIGHT OUTER JOIN (or sometimes called RIGHT JOIN)
• Oracle FULL OUTER JOIN (or sometimes called FULL JOIN)
• Natural joins:
• Cross joins

Ansi 1999 Syntax

SELECT table1.column, table2.column

FROM table1

[NATURAL JOIN table2] |

[JOIN table2 USING (column_name)] |

[JOIN table2

ON (table1.column_name = table2.column_name)]|

[LEFT|RIGHT|FULL OUTER JOIN table2

ON (table1.column_name = table2.column_name)]|

[CROSS JOIN table2];

SQL99 syntax is the recommended syntax for all new development. It offers many enhanced features. One of

the primary changes is the table joins are no longer specified in the WHERE clause. The joins are performed

after the FROM clause.

Table Aliases

It is recommended that table aliases are used when referencing tables in the FROM clause. Whenever there

is an ambiguity in the column names, you must use a table alias.

216 | P a g e

Lesson 8.2: Write SELECT statements to access data from more than one table

The following examples are based on the following tables:

Employees Departments

…..

……

217 | P a g e

Lesson 8.2: Inner Joins

It is the most common type of join. Oracle INNER JOINS return all rows from multiple tables where the join

condition is met. In this visual diagram, the Oracle INNER JOIN returns the shaded area.

SQL99 Syntax: SELECT columns

FROM table1

INNER JOIN table2

ON table1.column = table2.column;

SQL Example:

SELECT Employee_id,first_name, last_name,

 e.Department_id , Department_Name

FROM EMPLOYEES e

INNER JOIN Departments d

ON e.department_id=d.department_id

ORDER BY department_ID desc

* SQL92 Syntax: SELECT columns

FROM table1 , table2

WHERE table1.column = table2.column;

SQL Example:

SELECT Employee_id,first_name, last_name, e.Department_id

 , Department_Name

FROM EMPLOYEES e, Departments d

WHERE e.department_id=d.department_id

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

205 Shelley Higgins 110 Accounting

206 William Gietz 110 Accounting

109 Daniel Faviet 100 Finance

…….

Explanation: To determine an employee’s department name, you compare the value in the

DEPARTMENT_ID column in the EMPLOYEES table with the DEPARTMENT_ID values in

the DEPARTMENTS table. The relationship between the EMPLOYEES and DEPARTMENTS

tables is an equijoin; that is, values in the DEPARTMENT_ID column in both the tables

must be equal.Note Kimberly Grant is not included in the resultset as department ID null does

not exist in the DEPARTMENTS table

218 | P a g e

Code file: Code8_2_1.sql

Lesson 8.3: Outer Joins

LEFT OUTER JOIN

This type of join returns all rows from the LEFT-hand table specified in the ON condition and those rows from

the other table where the joined fields are equal (join condition is met).

SQL99 Syntax: SELECT columns

FROM table1

LEFT OUTER JOIN table2

ON table1.column = table2.column;

SQL Example:

SELECT Employee_id,first_name, last_name,

 e.Department_id , Department_Name

FROM EMPLOYEES e

LEFT OUTER JOIN Departments d

ON e.department_id=d.department_id

ORDER BY department_ID desc

* SQL92 Syntax: SELECT columns

FROM table1 , table2

WHERE table1.column = table2.column (+);

SQL Example:

SELECT Employee_id,first_name, last_name, e.Department_id

 ,Department_Name

FROM EMPLOYEES e, Departments d

WHERE e.department_id=d.department_id (+)

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

178 Kimberely Grant

205 Shelley Higgins 110 Accounting

206 William Gietz 110 Accounting

111 Ismael Sciarra 100 Finance

Explanation: To determine an employee’s department name, you compare the value in the

DEPARTMENT_ID column in the EMPLOYEES table with the DEPARTMENT_ID values in

219 | P a g e

the DEPARTMENTS table. The relationship between the EMPLOYEES and DEPARTMENTS

tables is left outer join that is, values in the DEPARTMENT_ID column in employees table

that are not matched will be included. Note Kimberly Grant is included.

Code file: Code8_2_2.sql

RIGHT OUTER JOIN

This type of join returns all rows from the Right-hand table specified in the ON condition and those rows from

the other table where the joined fields are equal (join condition is met).

SQL99 Syntax: SELECT columns

FROM table1

RIGHT OUTER JOIN table2

ON table1.column = table2.column;

SQL Example:

SELECT Employee_id,first_name, last_name,

 e.Department_id , Department_Name

FROM EMPLOYEES e

RIGHT OUTER JOIN Departments d

ON e.department_id=d.department_id

ORDER BY department_ID desc

* SQL92 Syntax: SELECT columns

FROM table1 , table2

WHERE table1.column(+) = table2.column;

SQL Example:

SELECT Employee_id,first_name, last_name, d.Department_id

 , Department_Name

FROM EMPLOYEES e, Departments d

WHERE e.department_id(+)=d.department_id

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

 140 Control And Credit

 130 Corporate Tax

220 | P a g e

 120 Treasury

206 William Gietz 110 Accounting

205 Shelley Higgins 110 Accounting

Explanation: This query retrieves all rows in the DEPARTMENTS table, which is the right table, even if

there is no match in the EMPLOYEES table

Code file: Code8_2_3.sql

221 | P a g e

FULL OUTER JOIN

This type of join returns all rows from the LEFT-hand table specified in the ON condition and on the RIGHT-

hand table and those rows from the other table where the joined fields are equal (join condition is met).

1999 Syntax: SELECT columns

FROM table1

FULL OUTER JOIN table2

ON table1.column = table2.column;

SQL Example:

SELECT Employee_id,first_name, last_name, d.Department_id

 ,Department_Name

FROM EMPLOYEES e

FULL OUTER JOIN Departments d

ON e.department_id=d.department_id

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

178 Kimberely Grant

 270 Payroll

 260 Recruiting

 250 Retail Sales

 240 Government

Sales

Explanation: This query retrieves all rows in the DEPARTMENTS table, which is the right table, even if

there is no match in the EMPLOYEES table

Code file: Code8_2_4.sql

222 | P a g e

Lesson 8.4: Natural Joins

You can join tables automatically based on the columns in the two tables that have matching data types and

names. You do this by using the NATURAL JOIN keywords.

Note 1: The join can happen on only those columns that have the same names and data types in both tables.

Note 2: If the columns have the same name but different data types, then the NATURAL JOIN syntax causes

an error.

Note 3: If there are no columns with the same name a CROSS JOIN is created.

Syntax: SELECT columns

FROM table1

NATURAL JOIN table2

SQL Example:

SELECT Employee_id,first_name, last_name, Department_id ,

Department_Name

FROM EMPLOYEES

NATURAL JOIN Departments

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

206 William Gietz 110 Accounting

109 Daniel Faviet 100 Finance

110 John Chen 100 Finance

111 Ismael Sciarra 100 Finance

…..

Explanation: The EMPLOYEES table is joined to the DEPARTMENT table by the Department _ID column,

which is the only column of the same name in both tables. If other common

columns were present, the join would have used them all.

Code file: Code8_4_1.sql

223 | P a g e

Natural Joins using

Natural joins use all columns with matching names and data types to join the tables. The USING clause can

be used to specify only those columns that should be used for an equijoin.

Syntax: SELECT columns

FROM table1

INNER|LEFT|RIGHT|FULL JOIN table2

USING (column)

SQL Example:

SELECT Employee_id,first_name, last_name, Department_id ,

Department_Name

FROM EMPLOYEES

INNER JOIN Departments

USING (department_ID)

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

206 William Gietz 110 Accounting

109 Daniel Faviet 100 Finance

110 John Chen 100 Finance

111 Ismael Sciarra 100 Finance

…..

Explanation: The EMPLOYEES table is joined to the DEPARTMENT table by the Department _ID column.

.

Code file: Code8_4_2.sql

When joining with the USING clause, you cannot qualify a column that is used in the USING clause itself.

Furthermore, if that column is used anywhere in the SQL statement, you cannot alias it. The columns that are

referenced in the USING clause should not have a qualifier (table name or alias) anywhere in the SQL

statement. Other columns that are common in both the tables, but not used in the USING clause, must be

prefixed with a table alias otherwise you get the “column ambiguously defined” error.

224 | P a g e

Natural Joins using ON

Natural joins use all columns with matching names and data types to join the tables. The USING clause can

be used to specify only those columns that should be used for an equijoin.

Syntax: SELECT columns

FROM table1

INNER|LEFT|RIGHT|FULL JOIN table2

USING (column)

SQL Example:

SELECT Employee_id,first_name, last_name, Department_id ,

Department_Name

FROM EMPLOYEES

INNER JOIN Departments

USING (department_ID)

ORDER BY department_ID desc;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

206 William Gietz 110 Accounting

109 Daniel Faviet 100 Finance

110 John Chen 100 Finance

111 Ismael Sciarra 100 Finance

…..

Explanation: The EMPLOYEES table is joined to the DEPARTMENT table by the Department _ID column.

.

Code file: Code8_2_4.sql

225 | P a g e

Lesson 8.5: Cross Joins

When a join condition is invalid or omitted completely, the result is a Cartesian product, in which all

combinations of rows are displayed. All rows in the first table are joined to all rows in the second table.

SQL 92 Syntax: SELECT columns

FROM table1

CROSS JOIN table2

SQL Example:

SELECT Employee_id,first_name, last_name, e.Department_id

, Department_Name

FROM EMPLOYEES e

CROSS JOIN Departments d;

SQL 99 Syntax: SELECT columns

FROM table1 ,table2

SQL Example:

SELECT Employee_id,first_name, last_name, e.Department_id

, Department_Name

FROM EMPLOYEES , Departments d;

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME DEPARTMENT_ID DEPARTMENT_NAME

100 Steven King 90 Administration

101 Neena Kochhar 90 Administration

102 Lex De Haan 90 Administration

103 Alexander Hunold 60 Administration

104 Bruce Ernst 60 Administration

…..

Explanation: The EMPLOYEES table is cross joined to the DEPARTMENT table. Every department is

repeated for every employee row

Code file: Code8_5_1.sql

226 | P a g e

Lesson 8.6: Join a table to itself by using a self-join

Sometimes you need to join a table to itself. To find the name of each employee’s manager, you need to join

the EMPLOYEES table to itself, or perform a self-join.

In the example above Alexander is Bruce’s manager.

1999 Syntax: SELECT columns

FROM table1 a

INNER JOIN table1 b

ON a.column = b.column;

SQL Example:

SELECT b.Employee_id, b.first_name , b.last_name,

 a.Employee_id,a.first_name, a.last_name,a.manager_id

FROM EMPLOYEES a

Inner join EMPLOYEES b

On a.employee_id=b.manager_id

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME EMPLOYEE_ID_1 FIRST_NAME_1

 LAST_NAME_1 MANAGER_ID

101 Neena Kochhar 100 Steven King

102 Lex De Haan 100 Steven King

103 Alexander Hunold 102 Lex De Haan 100

104 Bruce Ernst 103 Alexander Hunold 102

105 David Austin 103 Alexander Hunold 102

Explanation: This statement is a self-join of the EMPLOYEES table, based on the EMPLOYEE_ID and

MANAGER_ID columns

Code file: Code8_6_1.sql

227 | P a g e

Lesson 8.7: Joining multiple tables

Syntax: SELECT columns

FROM table1

INNER JOIN table2

ON table1.column = table2.column

INNER JOIN table3

ON table1.column = table3.column

SQL Example:

SELECT E.EMPLOYEE_ID,

 E.FIRST_NAME,

 E.LAST_NAME,

 J.JOB_TITLE,

 D.DEPARTMENT_NAME

FROM JOBS J

INNER JOIN EMPLOYEES E

228 | P a g e

ON J.JOB_ID = E.JOB_ID

INNER JOIN DEPARTMENTS D

ON D.DEPARTMENT_ID = E.DEPARTMENT_ID

Query Results: EMPLOYEE_ID FIRST_NAME LAST_NAME JOB_TITLE

 DEPARTMENT_NAME

200 Jennifer Whalen Administration Assistant

 Administration

202 Pat Fay Marketing Representative Marketing

201 Michael Hartstein Marketing Manager Marketing

114 Den Raphaely Purchasing Manager Purchasing

119 Karen Colmenares Purchasing Clerk Purchasing

Explanation: This statement shows the EMPLOYEES table joined to Jobs table and department table

Code file: Code8_7_1.sql

 *.

229 | P a g e

Section 9: Use Sub-queries to Solve Queries

In this section you will:

• Describe the types of problem that sub-queries can solve
• Define sub-queries
• List the types of sub-queries
• Write single-row and multiple-row sub-queries

230 | P a g e

Lesson 9.1: Overview of sub-queries

Subqueries are used to combining multiple queries into one result table. A sub query can be thought of as a

temporary table, it is created when the whole query is run and then discarded when the primary query is

finished.

Lesson 9.2: Define sub-queries

Sub queries the use of a SELECT statement inside one of the clauses of another SELECT statement. In fact, a

subquery can be contained inside another subquery, which is inside another subquery, and so forth. A

subquery can also be nested inside INSERT, UPDATE, and DELETE statements. Subqueries must be enclosed

within parentheses. A subquery can be used any place where an expression is allowed providing it returns a

sing le value. This means that a subquery that returns a sing le value can also be listed as an object in a FROM

clause listing. This is termed an inline view because when a subquery is used as part of a FROM clause, it is

treated like a virtual table or view. Subquery can be placed either in FROM clause, WHERE clause or HAVING

clause of the main query. Oracle allows a maximum nesting of 255 subquery levels in a WHERE clause. There

is no limit for nesting subqueries expressed in a FROM clause. In practice, the limit of 255 levels is not really a

limit at all because it is rare to encounter subqueries nested beyond three or four levels. A subquery SELECT

statement is very similar to the SELECT statement used to beg in a regular or outer query.

The complete syntax of a subquery is:

SELECT [DISTINCT] subquery_select_parameter

FROM {table_name | view_name}

{table_name | view_name} ...

[WHERE search_conditions]

[GROUP BY column_name [,column_name] ...]

[HAVING search_conditions])



231 | P a g e

Lesson 9.3: List the types of sub-queries

Single Row Sub Query: Sub query which returns sing le row output. They mark the usage of single row

comparison operators, when used in WHERE conditions.

Multiple row sub query: Sub query returning multiple row output. They make use of multiple row

comparison operators like IN, ANY, ALL. There can be sub queries returning multiple columns also.

Correlated Sub Query: Correlated subqueries depend on data provided by the outer query. This type of

subquery also includes subqueries that use the EXIST S operator to test the existence of data rows satisfying

specified criteria.

Lesson 9.4: Write single-row and multiple-row sub-queries

Single-row

A sing le-row subquery is used when the outer query's results are based on a sing le, unknown value. Although

this query type is formally called "sing le-row," the name implies that the query returns multiple columns-but

only one row of results. However, a sing le-row subquery can return only one row of results consisting of only

one column to the outer query.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE column = (Subquery)];

SQL Example:

SELECT first_name, salary, department_id

FROM employees

WHERE salary = (SELECT MIN (salary)

FROM employees);

Query Results: FIRST_NAME SALARY DEPARTMENT_ID

TJ 2100 50

…

Explanation: The inner SELECT query returns only one row i.e. the minimum salary for the

company. It in turn uses this value to compare salary of all the employees and

displays only those, whose salary is equal to minimum salary.

Code file: Code9_4_1.sql

232 | P a g e

Multiple-row

Multiple-row subqueries are nested queries that can return more than one row of results to the parent query.

Multiple-row subqueries are used most commonly in WHERE and HAVING clauses. Since it returns multiple

rows, it must be handled by set comparison operators (IN, ALL, ANY).While IN operator holds the same

meaning as discussed in earlier chapter, ANY operator compares a specified value to each value returned by

the sub query while ALL compares a value to every value returned by a sub query.

Usage of Multiple Row operators

• [> ALL] More than the highest value returned by the subquery
• [< ALL] Less than the lowest value returned by the subquery
• [< ANY] Less than the highest value returned by the subquery
• [> ANY] More than the lowest value returned by the subquery
• [= ANY] Equal to any value returned by the subquery (same as IN)



Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE column >[ALL][ANY] [IN] (Subquery)];

SQL Example:

SELECT first_name, department_id

FROM employees

WHERE department_id IN (SELECT department_id

FROM departments

WHERE LOCATION_ID =1700)

Query Results: FIRST_NAME DEPARTMENT_ID

Shelli 30

John 100

Karen 30

Lex 90

Daniel 100

…

Explanation: IN matches department ids returned from the sub query, compares it with that in

the main query and returns employee's name who satisfy the condition

Code file: Code9_4_2.sql

233 | P a g e

Multiple Column Subqueries

As the name suggests this type of query has multiple columns within the sub query. The condition used to

match the sub query must have the same number of columns as the sub query.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE column1, column2(s) operator (SELECT column1, column2 ….];

SQL Example:

SELECT last_name, first_name, manager_id, department_id

FROM employees

WHERE (manager_id, department_id) in (SELECT manager_id,

department_id

 FROM employees

 WHERE last_name = 'King');

Query Results: LAST_NAME FIRST_NAME MANAGER_ID DEPARTMENT_ID

King Janette 146 80

Sully Patrick 146 80

McEwen Allan 146 80

Smith Lindsey 146 80

Doran Louise 146 80

…

Explanation: The SELECT statement returns all employees with the same Manager and

department as employee King

Code file: Code9_4_3.sql

234 | P a g e

Lesson 9.5: Correlated Sub queries

Work in the opposite direction to standard subqueries. This subquery depends on data retrieved from the

master query. As opposed to a regular subquery, where the outer query depends on values provided by the

inner query, a correlated subquery is one where the inner query depends on values provided by the outer

query. This means that in a correlated subquery, the inner query is executed repeatedly, once for each row

that might be selected by the outer query.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT EMPLOYEE_ID, salary, department_id

FROM employees E

WHERE salary > (SELECT AVG(salary)

FROM employees T

WHERE E.department_id = T.department_id)

Query Results: EMPLOYEE_ID SALARY DEPARTMENT_ID

100 24000 90

103 9000 60

104 6000 60

108 12008 100

109 9000 100

Explanation: The subquery in this SELECT statement cannot be resolved independently of the

main query. The outer query specifies that rows are selected from the employee

table with an alias name of e. The inner query compares the employee department

number column (DepartmentID) of the employee table with alias T to the same

column for the alias table name e.

Code file: Code9_4_4.sql

235 | P a g e

Section 10: The SET Operators

In this section you will:

• Describe the SET operators
• Use a SET operator to combine multiple queries into a single query
• Control the order of rows returned

236 | P a g e

Lesson 10.1: Describe the SET operators – UNION, INTERSECT, MINUS

Set operators are used to join the results of two (or more) SELECT statements. The SET operators available in

Oracle 11g are UNION, UNION ALL, INTERSECT and MINUS.

The UNION set operator returns the combined results of the two SELECT statements. It removes duplicates

from the results i.e. only one row will be listed for each duplicated result. To counter this behavior, use the

UNION ALL set operator which retains the duplicates in the final result.

INTERSECT lists only records that are common to both the SELECT queries; the MINUS set operator removes

the second query's results from the output if they are also found in the first query's results. INTERSECT and

MINUS set operations produce unduplicated results.

237 | P a g e

Lesson 10.2: Use a SET operator to combine multiple queries into a single query

UNION

This operator will combine the results of multiple select statements and eliminates copies of duplicate values.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)]

UNION [ALL]

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT JOB_ID

FROM employees

WHERE DEPARTMENT_ID = 10

UNION

SELECT JOB_ID

FROM employees

WHERE DEPARTMENT_ID = 20;

Query Results: JOB_ID

AD_ASST

MK_MAN

MK_REP

Explanation: The SELECT statement job ids for department 10 and append jobs id from

department 20

Code file: Code 10_2_1.sql

238 | P a g e

INTERSECT

This operator will combine the results of multiple select statements and only return rows that appear in both

queries

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)]

INTERSECT

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT salary

FROM employees

WHERE DEPARTMENT_ID = 50

INTERSECT

SELECT salary

FROM employees

WHERE DEPARTMENT_ID = 60;

Query Results: SALARY

4200

Explanation: SELECT query retrieves the salary which are common in department 50 and 60

Code file: Code 10_2_2.sql

239 | P a g e

MINUS

This operator will take the rows from first query and removes the rows returned by the second query.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)]

MINUS

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT salary

FROM employees

WHERE DEPARTMENT_ID = 50

MINUS

SELECT salary

FROM employees

WHERE DEPARTMENT_ID = 60;

Query Results: SALARY

4200

Explanation: SELECT query retrieves the salary which in department 50 and remove the rows in

department 60

Code file: Code 10_2_3.sql

240 | P a g e

Lesson 10.3: Control the order of rows returned

The ORDER BY clause can appear only once at the end of the query containing compound SELECT statements.

It implies that individual SELECT statements cannot have ORDER BY clause. Additionally, the sorting can be

based on the columns which appear in the first SELECT query only. For this reason, it is recommended to sort

the compound query using column positions.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)]

MINUS|UNION |INTERSECT

SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

[WHERE condition(s)];

SQL Example:

SELECT employee_id, first_name, salary

FROM employees

WHERE department_id=10

UNION

SELECT employee_id, first_name, salary

FROM employees

WHERE department_id=20

ORDER BY 3;

Query Results: EMPLOYEE_ID FIRST_NAME SALARY

200 Jennifer 4400

202 Pat 6000

201 Michael 13000

Explanation: SELECT query unifies the results from two departments and sorts by the SALARY

column

Code file: Code 10_3_1.sql

241 | P a g e

Section 11: Data Manipulation Statements and ETL

In this section you will:

• Describe each DML statement
• Insert rows into a table
• Change rows in a table by the UPDATE statement
• Delete rows from a table with the DELETE statement
• Save and discard changes with the COMMIT and ROLLBACK statements
• Explain read consistency

242 | P a g e

Lesson 11.1: Describe each DML statement

DML (Data Manipulation Language) is the subset of SQL used to access and manipulate data contained within

the data structures previously defined via data definition language (DDL).

DML comprises four statements.

SELECT

INSERT

UPDATE

DELETE

MERGE

• The SELECT statement is a limited form of DML statement in that it can only access data in the
database. Unlike the other statements it cannot manipulate data in the database.

• The INSERT statement adds new rows to the table.
• The UPDATE statement modifies existing rows in the table.
• The DELETE statement removes rows from the table.
• The MERGE statement selects rows from one table to update or insert into another table.

243 | P a g e

Lesson 11.2: Insert rows into a table

Inserting Data into One Table

Single table inserts only allowing inserting data into one table at a time. The data to be inserted can be queried

from multiple tables. Not all the columns in the table need to be inserted but be aware of columns that require

non-NULL values. Values to be inserted must be compatible with the data type of the column. Literals, fixed

values and special values like functions, SYSDATE, CURRENT_DATE, SEQ.CURRVAL (NEXTVAL), or USER can be

used as column values. Values specified must follow the generic rules. String literals and date values must be

enclosed within quotes. Date value can be supplied in DD-MON-RR or D-MON-YYYY format, but YYYY is

preferred since it clearly specifies the century and does not depend on internal RR century calculation logic.

Syntax: INSERT INTO table(column1, column2….)

VALUES (column1 value, column2 value, ...);

SQL Example:

INSERT INTO employees (EMPLOYEE_ID, FIRST_NAME,last_name,

SALARY, DEPARTMENT_ID,email, hire_date,job_id)

VALUES (99, 'Kee','John', 3800, 10,'a@b.ie', '10-JAN-

2014','IT_PROG');

Query Results: 1 rows inserted.

Explanation: Add a new employee record in the EMPLOYEES table. it inserts the values for the primary columns

EMPLOYEE_ID, FIRST_NAME,last_name, SALARY, DEPARTMENT_ID,email,

hire_date,job_id

Code file: Code11_2_1.sql

Another example of inserting a single row in a table

Syntax: INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);

SQL Example:

INSERT INTO departments

VALUES (300, 'Infrastructure', 100, 1700);

INSERT INTO departments(department_id,

 department_name, manager_id, location_id)

VALUES (310, 'Invoicing', 100, 1700);

244 | P a g e

Explanation: In the syntax:

table is the name of the table

column is the name of the column in the table to populate

value is the corresponding value for the column

Both these examples each insert a single row at a time into the DEPARTMENTS table.

As you can insert a new row that contains values for each column, the column list is

not required in the INSERT clause. If you do not use the column list, the values must

be listed according to the default order of the columns in the table, and a value must

be provided for each column – the first example shows this technique. It is, however,

good practice to specify the column listing in the INSERT statement as in the second

example.

You will need to enclose character and date values in single quotation marks. Dates

will also need to be in the database date default format e.g. DD-MON-YY unless you

use conversion functions such as TO_DATE

Code file: Code11_2_2.sql

Inserting nulls

There are two ways of inserting NULL values into a column:

IMPLICT - remove the column from the column list.

EXPLICT - specify the NULL keyword in the VALUES list.

SQL Example:

IMPLICIT method:

INSERT INTO departments(department_id, department_name)

VALUES (320, 'Auditing');

EXPLICIT method:

245 | P a g e

INSERT INTO departments

VALUES (330, 'Banking', NULL, NULL);

A combined method:

INSERT INTO departments(department_id,

 department_name, manager_id, location_id)

VALUES (340, 'Networking', NULL, 1700);

Explanation: The first example inserts a row into the DEPARTMENTS table with NULL values in

the LOCATION_ID and MANAGER_ID columns by omitting those columns in the

column listings. The second example does the same thing but omits all the column

listings so the values are put positionally ie 110 in the DEPARTMENT_ID and Public

Relations in the DEPARTMENT_NAME. NULLs are put in the remaining columns. The

third example just puts a NULL into the MANAGER_ID column.

Code file: Code11_2_3.sql

246 | P a g e

Inserting Data in Multiple Tables

The INSERT statement allows one INSERT to insert rows into multiple tables. This is particularly useful in data

warehouse applications where data may require to be loaded into multiple tables after being extracted from

one or more table. Normally this type of action would require multiple insert statement.

ALL – this allow an unconditional insert to occur, i.e. no condition added

WHEN – this allows a conditional insert to occur. This is similar to an IF statement in PL/SQL.

Unconditional Insert

This allows data to be inserted into one or more table base on a select statement.

The syntax required is:

Syntax: INSERT ALL

 INTO table1 [(cols..)]

 VALUES (value1…)

 INTO table2 [(cols..)]

 VALUES (value1)

SELECT ….;

SQL Example:

INSERT ALL

INTO emp_stage (emp_id, first_name, last_name)

VALUES(emp_id, first_name, last_name)

INTO car_stage (regno, emp_id, make, model)

VALUES(regno, emp_id, make, model)

SELECT e.emp_id,

 e.first_name,

 e.last_name,

 c.regno,

 c.make,

 c.model

FROM employees e, cars c

WHERE e.emp_id = c.emp_id

Query Results:

Explanation: In this example we have create 2 empty tables called emp_stage and car_stage

which will have data loaded from the cars and employees’ tables.

247 | P a g e

Code file: Code11_2_4.sql

248 | P a g e

Conditional Insert Statements

It is possible to provide a condition to an insert statement using the WHEN clause. This behaves in a similar

way to an IF statement in PL/SQL where based on the evaluation of a condition a specific insert will occur.

There are two syntax options available with the WHEN clause of the INSERT statement. The INSERT FIRST will

evaluate the WHEN clause for a row if it finds a true the remaining WHEN statements will be ignored for the

current row. The INSERT ALL will evaluate each WHEN statement independently, this means that potentially

one row could be evaluated in the sub query which would cause multiple inserts for each WHEN statement.

SQL Example:

INSERT ALL

 WHEN jobtitle like '%MANAGER%'

 INTO manager_info

 VALUES(emp_id, first_name, last_name)

 WHEN dept_id in (10,20,30,40)

 INTO emp_info

 VALUES(emp_id, first_name, last_name)

SELECT emp_id,

 first_name,

 last_name,

 jobtitle

from employees;

Query Results:

Explanation: When the job title is manager insert into manager info. When the employee is in a

specific department insert into emp_info.

Code file: Code11_2_3.sql

249 | P a g e

Lesson 11.3: Change rows in a table by the UPDATE statement

The UPDATE statement allows data that has already been entered to be updated. UPDATE uses a WHERE

clause to specify which rows are to be updated. If more than one column in a table is to be amended then

there are two choices of update. First option is to provide a set of columns/value pairs separated by commas

or the second option is to provide a set of columns and a subquery.

Syntax: UPDATE tablename table_alias

SET column 1 = expression 1

WHERE conditions;

SQL Example:

UPDATE employees

SET salary = 1.05 * salary

WHERE COMMISSION_PCT IS NOT NULL

Query Results: …

Explanation: Update statement increase the salary by 5%

Code file: Code11_3_1.sql

250 | P a g e

Change rows in a table by using a sub-query

You can update columns in the SET clause of an UPDATE statement by writing sub-queries. Sub-queries can

also be used in the WHERE clause to define the rows to be updated.

Syntax: UPDATE table

SET column = (sub-query) (

 [, column = (sub-query)]

[WHERE condition]

SQL Example:

UPDATE employees

SET department_id = (SELECT department_id

FROM departments

WHERE department_name =

'Marketing')

WHERE salary = (SELECT salary

FROM employees

WHERE job_id = 'AD_PRES');

Explanation: This example changes the DEPARTMENT_ID to that of the Marketing department

for all those employees whose salary is the same as that of the AD_PRES ‘s JOB_ID

Code file: Code11_3_2.sql

251 | P a g e

Merging Data

When data is being loaded there may be occasions to perform both an insert and an update, this is often

referred to as an Upsert.

Syntax: MERGE INTO table_to_merge_to

USING table_to_merge_from

ON (primary_key = primary_key)

WHEN matched THEN

UPDATE SET column = column

WHEN NOT MATCHED THEN

INSERT (columns…..)

VALUES (values……);

SQL Example:

merge into dw_customers d

using customer_2002 c

on (d.id=c.id)

when matched then

update set d.name=c.name,

 d.post_code=c.post_code

when not matched then

insert (id, name, post_code)

values (c.id, c.name, c.post_code)

Explanation: We have a customers table that contains a list of our customer’s data which is being

constantly added to and amended. We also have a DW_CUSTOMERS table in our

data warehousing that contains the id, name and postcode of the each customer. If

the Customer exists in DW_CUSTOMERS table then update the fields otherwise

insert the record

Code file: Code11_3_3.sql

252 | P a g e

Lesson 11.4: Delete rows from a table with the DELETE statement

The DELETE statement allows for deleting of specific data held within a table. The DELETE statement has a

where clause to allow you to delete specific data or if the WHERE clause is forgotten then all the data from

the table will be deleted.

A subquery can be used within the where clause if required. Another option is to specify how many rows to

delete.

Syntax: DELETE FROM tablename

WHERE condition(s);

SQL Example:

DELETE FROM employees

WHERE manager_id = 1001;

Explanation: Delete employees where the manager is 1001

Code file: Code11_4_1.sql

Removing rows from a table using a sub-query

You can use sub-queries to delete rows from a table based on values from another table.

Syntax: DELETE [FROM]table

[WHERE sub-query];

SQL Example:

DELETE FROM employees

WHERE department_id = (SELECT department_id

FROM departments

WHERE department_name = 'Banking');

253 | P a g e

Explanation: The example deletes all employees from the EMPLOYEES tables who are in the

Banking department. The Banking department’s id is returned via the sub-query.

Code file: Code11_4_2.sql

Truncating Tables

Truncating tables is a more common method of deleting data from a table. Unlike the DELETE command it is

not possible to reverse the deletion by using the ROLLBACK command. However, the TRUNCATE command is

more efficient and quicker than using the DELETE command.

Syntax:

TRUNCATE table_name;

Example:

TRUNCATE employees;

254 | P a g e

Lesson 11.5: Save and discard changes with the COMMIT and ROLLBACK statements

A transaction is a logical unit of work done in database. It can either contain:

• Multiple DML commands ending with a TCL command i.e. COMMIT or ROLLBACK

• One DDL command

• One DCL command

Beginning of a transaction is marked with the first DML command. It ends with a TCL, DDL or DCL command.

A TCL command i.e. COMMIT or ROLLBACK is issues explicitly to end an active transaction. By virtue of their

basic behavior, if any of DDL or DCL commands get executed in a database session, commit the ongoing active

transaction in the session. If the database instance crashes abnormally, the transaction is stopped.

COMMIT, ROLLBACK and SAVEPOINT are the transaction control language. COMMIT applies the data changes

permanently into the database while ROLLBACK does anti-commit operation. SAVEPOINT controls the series

of a transaction by setting markers at different transaction stages. User can roll back the current transaction

to the desired save point, which was set earlier.

COMMIT - Commit ends the current active transaction by applying the data changes permanently into the

database tables. COMMIT is a TCL command which explicitly ends the transaction. However, the DDL and DCL

command implicitly commit the transaction.

SAVEPOINT - Savepoint is used to mark a specific point in the current transaction in the session. Since it is

logical marker in the transaction, savepoints cannot be queried in the data dictionaries.

ROLLBACK - The ROLLBACK command is used to end the entire transaction by discarding the data changes. If

the transaction contains marked savepoints, ROLLBACK TO SAVEPOINT [name] can be used to roll back the

transaction upto the specified savepoint only. As a result, all the data changes upto the specified savepoint

will be discarded.

Syntax:

Transactions with end following either:

COMMIT; --Confirms changes made

ROLLBACK; --Removed changes made since the last COMMIT

Consider the EMPLOYEES table which gets populated with newly hired employee details during first quarter

of every year. The clerical staff appends each employee detail with a savepoint, so as to rollback any faulty

data at any moment during the data feeding activity. Note that he keeps the savepoint names same as the

employee names.

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

FROM table

WHERE condition(s)];;

255 | P a g e

SQL Example:

INSERT INTO employees (employee_id, first_name,

hire_date, job_id, salary, department_id)

VALUES (105, 'Allen',TO_DATE ('15-JAN-

2013','SALES',10000,10);

SAVEPOINT Allen;

INSERT INTO employees (employee_id, first_name,

hire_date, job_id, salary, department_id)

VALUES (106, 'Kate',TO_DATE ('15-JAN-

2013','PROD',10000,20);

SAVEPOINT Kate;

INSERT INTO employees (employee_id, first_name,

hire_date, job_id, salary, department_id)

VALUES (107, 'McMan',TO_DATE ('15-JAN-

2013','ADMIN',12000,30);

SAVEPOINT McMan;

ROLLBACK TO SAVEPOINT Kate;

INSERT INTO employees (employee_id, first_name,

hire_date, job_id, salary, department_id)

VALUES (106, 'Kate',TO_DATE ('15-JAN-

2013','PROD',12500,20);

SAVEPOINT Kate;

INSERT INTO employees (employee_id, first_name,

hire_date, job_id, salary, department_id)

VALUES (107, 'McMan',TO_DATE ('15-JAN-

2013','ADMIN',13200,30);

SAVEPOINT McMan;

Commit

Query Results: Rolls back the active transaction to the savepoint Kate and re-enters the employee

details for Kate and McMan

.

256 | P a g e

Code file: Code11_5_1.sql

Lesson 11.6: ETL

ETL comes from Data Warehousing and stands for Extract-Transform-Load. ETL covers a process of how the

data are loaded from the source system to the data warehouse. Currently, the ETL encompasses a cleaning

step as a separate step. The sequence is then Extract-Clean-Transform-Load.

Extract

The Extract step covers the data extraction from the source system and makes it accessible for further

processing. The main objective of the extract step is to retrieve all the required data from the source system

with as little resources as possible. The extract step should be designed in a way that it does not negatively

affect the source system in terms or performance, response time or any kind of locking.

There are several ways to perform the extract:

 Update notification - if the source system is able to provide a notification that a record has been

changed and describe the change, this is the easiest way to get the data.

 Incremental extract - some systems may not be able to provide notification that an update has

occurred, but they are able to identify which records have been modified and provide an extract of

such records. During further ETL steps, the system needs to identify changes and propagate it down.

Note, that by using daily extract, we may not be able to handle deleted records properly.

 Full extract - some systems are not able to identify which data has been changed at all, so a full extract

is the only way one can get the data out of the system. The full extract requires keeping a copy of the

last extract in the same format in order to be able to identify changes. Full extract handles deletions

as well.

 When using Incremental or Full extracts, the extract frequency is extremely important. Particularly for

full extracts; the data volumes can be in tens of gigabytes.

Clean

The cleaning step is one of the most important as it ensures the quality of the data in the data warehouse.

Cleaning should perform basic data unification rules, such as:

 Making identifiers unique (Man/Woman/Not Available are translated to standard

Male/Female/Unknown)

 Convert null values into standardized Not Available/Not Provided value

 Convert phone numbers, ZIP codes to a standardized form

 Validate address fields, convert them into proper naming, e.g. Street/St/St./Str./Str

 Validate address fields against each other (State/Country, City/State, City/ZIP code, City/Street).

Transform

257 | P a g e

The transform step applies a set of rules to transform the data from the source to the target. This includes

converting any measured data to the same dimension (i.e. conformed dimension) using the same units so that

they can later be joined. The transformation step also requires joining data from several sources, generating

aggregates, generating surrogate keys, sorting, deriving new calculated values, and applying advanced

validation rules.

Load

During the load step, it is necessary to ensure that the load is performed correctly and with as little resources

as possible. The target of the Load process is often a database. In order to make the load process efficient, it

is helpful to disable any constraints and indexes before the load and enable them back only after the load

completes. The referential integrity needs to be maintained by ETL tool to ensure consistency. Managing ETL

Process

The ETL process seems quite straight forward. As with every application, there is a possibility that the ETL

process fails. This can be caused by missing extracts from one of the systems, missing values in one of the

reference tables, or simply a connection or power outage. Therefore, it is necessary to design the ETL process

keeping fail-recovery in mind.

Staging

It should be possible to restart, at least, some of the phases independently from the others. For example, if

the transformation step fails, it should not be necessary to restart the Extract step. We can ensure this by

implementing proper staging. Staging means that the data is simply dumped to the location (called the Staging

Area) so that it can then be read by the next processing phase. The staging area is also used during ETL process

to store intermediate results of processing. This is ok for the ETL process which uses for this purpose. However,

tThe staging area should is be accessed by the load ETL process only. It should never be available to anyone

else; particularly not to end users as it is not intended for data presentation to the end-user.may contain

incomplete or in-the-middle-of-the-processing data.

ETL Tool Implementation

When you are about to use an ETL tool, there is a fundamental decision to be made: will the company build

its own data transformation tool or will it use an existing tool?

Building your own data transformation tool (usually a set of shell scripts, sql scripts) is the preferred approach

for a small number of data sources which reside in storage of the same type. The reason for that is the effort

to implement the necessary transformation is little due to similar data structure and common system

architecture.

There are many ready-to-use ETL tools on the market. The main benefit of using off-the-shelf ETL tools is the

fact that they are optimized for the ETL process by providing connectors to common data sources like

databases, flat files, mainframe systems, xml, etc. They provide a means to implement data transformations

easily and consistently across various data sources. This includes filtering, reformatting, sorting, joining,

merging, aggregation and other operations ready to use. The tools also support transformation scheduling,

258 | P a g e

version control, monitoring and unified metadata management. Some of the ETL tools are even integrated

with BI tools. The most well known commercial tools are Ab Initio, IBM InfoSphere DataStage, Informatica,

Oracle Data Integrator and SAP Data Integrator. There are several open source ETL tools, among others Apatar,

CloverETL, Pentaho and Talend.

Section 12: Introduction to PL/SQL

In this section you will:

• Overview PL/SQL
• Identify the benefits of PL/SQL Subprograms
• Overview the types of PL/SQL blocks
• Create a Simple Anonymous Block
• Generate output from a PL/SQL Block

http://www.abinitio.com/
http://www.ibm.com/software/data/infosphere/datastage/
http://www.informatica.com/
http://www.oracle.com/technetwork/middleware/data-integrator/index.html
http://www.sap.com/solutions/sapbusinessobjects/large/eim/dataintegrator/index.epx
http://www.apatar.com/
http://www.cloveretl.com/?__hstc=21553316.d9a49852fed2be12c0cb9a6a89e3d933.1556583096915.1556583096915.1556583096915.1&__hssc=21553316.1.1556583096917&__hsfp=4045915392
http://www.pentaho.com/
http://www.talend.com/

259 | P a g e

Lesson 12.1: Overview of PL/SQL

The early versions of the Oracle database were only equipped with the 4th generation language of SQL

(Structured Query Language). Although a very powerful language, SQL does not contain the 3rd generation

language features required by developers. These are provided by the PL/SQL language which was introduced

to the Oracle Database in version 6 and has developed with each new release of the database. The PL/SQL

acronym stands for the Procedural Language of SQL and unlike other programming languages it is not a

standalone language, i.e. it only exists in Oracle.

PL/SQL defines a block structure for writing code. Maintaining and debugging code is made easier with such a

structure because you can easily understand the flow and execution of the program unit.PL/SQL offers data

encapsulation, exception handling, information hiding, and object orientation.

There are several versions of the PL/SQL:

PL/SQL Version Database Version

Version 2.0 – 2.3 Oracle 7

Version 8.0 Oracle 8

Version 8.1 Oracle 8.1

Version 9.1 Oracle 9.1

Version 10.2 Oracle 10g

Version 11.1 Oracle 11g

Version 12 Oracle 12g

260 | P a g e

PL/SQL runtime

All PL/SQL statements are processed in the Procedural Statement Executor, and all SQL statements must be

sent to the SQL Statement Executor for processing by the Oracle Server processes. The SQL environment may

also invoke the PL/SQL environment. For example, the PL/SQL environment is invoked when a PL/SQL function

is used in a SELECT statement. The PL/SQL engine is a virtual machine that resides in memory and processes

the PL/SQL m-code instructions. When the PL/SQL engine encounters a SQL statement, a context switch is

made to pass the SQL statement to the Oracle Server processes. The PL/SQL engine waits for the SQL

statement to complete and for the results to be returned before it continues to process subsequent

statements in the PL/SQL block.

261 | P a g e

Lesson 12.2: Identify the benefits of PL/SQL Subprograms

Benefits of PL/SQL

Integration of procedural constructs with SQL

PL/SQL integrates procedural constructs with SQL. SQL is a nonprocedural language. PL/SQL integrates control

statements and conditional statements with SQL, giving you better control of your SQL statements and their

execution

Improved performance:

PL/SQL, you would not be able to logically combine SQL statements as one unit. The application can send the

entire block to the database instead of sending the SQL statements one at a time. This significantly reduces

the number of database calls.

Modularized program development:

The basic unit in all PL/SQL programs is the block. Blocks can be in a sequence or they can be nested in other

blocks.

262 | P a g e

Maintain and debug code.

In PL/SQL, modularization is implemented using procedures, functions, and packages. These units can be run

in debug mode this allowing Step into and other debugging tools.

Exception handling:

PL/SQL enables you to handle exceptions efficiently. You can define separate blocks for dealing with

exceptions.

263 | P a g e

Lesson 12.3: Overview of the types of PL/SQL blocks

PL/SQL allows the user to develop blocks of code. There are several different types of block that can be

created:

• Anonymous Blocks
• Procedures
• Functions

Procedures

Procedures are named objects that contain SQL and/or PL/SQL statements.

Functions

Functions are named objects that contain SQL and/or PL/SQL statements. Unlike a procedure, a function

returns a value of a specified data type.

Anonymous blocks

Anonymous blocks are unnamed blocks. They are declared inline at the point in an application where they are

to be executed and are compiled each time the application is executed. These blocks are not stored in the

database. They are passed to the PL/SQL engine for execution at run time.

264 | P a g e

Lesson 12.4: Anonymous Block

The diagram below shows the structure of an anonymous block.

Declare Section

This is an optional section, which is used to define items that will be used in the executable section of the

code. The main items that will be created in this section are:

Variables – temporary objects created to hold data, which can be changed during the execution of the code.

For example, an object to hold the result of a calculation.

Constants – temporary objects created to hold data, which cannot be changed during the execution of the

code. For example, a tax rate.

Explicit Cursors – these are used to retrieve data from the database. We will cover Cursors in detail later in

this course.

Collections – these are used to group lists of related data together. These are more advanced techniques and

will be introduced towards the end of this course.

Begin Section

The Begin section is the executable part of the PL/SQL code. This section can contain both SQL and PL/SQL

commands. Therefore, it is possible to enter SQL operations such as:

• DML Commands INSERT, UPDATE, DELETE and a specific type of SELECT statement
• Functions – for example SQL functions like TO_CHAR, UPPER etc.

One type of SQL that by default cannot be incorporated into PL/SQL are the DDL (Data Definition Language)

commands:

• CREATE, ALTER or DROP
• GRANT and REVOKE

[DECLARE

 declarations]

BEGIN

 executable statements

[EXCEPTION

265 | P a g e

It is possible using the block structure to nest additional blocks of code within the begin section for example:

DECLARE

 ….

BEGIN

 DECLARE

 ….

 BEGIN

 ….

 END;

END;

Exception Section

The Exception section is an optional section, which can be added between the Begin and End commands. This

section is used to handle errors or exceptions to business logic in the code. Exceptions will be looked at in

detail later in this course.

End Command

The End command, which is then followed by a semi-colon, indicates the termination of the code.

266 | P a g e

Create an anonymous block

To create an anonymous block by using SQL Developer, enter the block in the workspace. To execute an

anonymous block, click the Run Script button (or press F5).

Note: The message “anonymous block completed” is displayed in the Script Output window after the block is

executed.

267 | P a g e

Lesson 12.5: How to generate output from a PL/SQL Block?

PL/SQL does not have built-in input or output functionality. Therefore, you need to use predefined Oracle

packages for input and output. Oracle has a package of code called DBMS_OUTPUT. A package is a library of

related PL/SQL code, which is stored in the database or client application as a single entity.

DBMS_OUTPUT Package

The DBMS_OUTPUT package consists of many different procedures and functions. However, the most

common item used from the package is the PUT_LINE procedure.

Syntax: SET SERVEROUTPUT ON

DBMS_OUTPUT.PUT_LINE([string][number][date]);

SQL Example:

SET SERVEROUTPUT ON;

DECLARE in_stock NUMBER;

BEGIN

 in_stock :=500;

 DBMS_OUTPUT.PUT_LINE('There are ' || in_stock || '

items in stock.');

END;

Query Results:

Explanation: To generate output, you must perform the SET SERVEROUTPUT ON

Code file: Code12.sql

268 | P a g e

The DBMS_OUTPUT.PUT_LINE result can be also viewed in the DBMS Output window.

269 | P a g e

Section 13: Declare PL/SQL Identifiers

In this section you will:

• List the different Types of Identifiers in a PL/SQL subprogram
• Usage of the Declarative Section to Define Identifiers
• Use variables to store data
• Identify Scalar Data Types
• The %TYPE Attribute
• What are Bind Variables?
• Sequences in PL/SQL Expressions

270 | P a g e

Lesson 13.1: Types of Identifiers in a PL/SQL subprogram

You use identifiers to name PL/SQL program items and units, which include constants, variables, exceptions,

cursors, cursor variables, subprograms, and packages. Some examples of identifiers follow:

X

t2

phone#

credit_limit

LastName

oracle$number

An identifier consists of a letter optionally followed by more letters, numerals, dollar signs, underscores, and

number signs. Other characters such as hyphens, slashes, and spaces are not allowed, as the following

examples show:

mine&yours -- not allowed because of ampersand

debit-amount -- not allowed because of hyphen

on/off -- not allowed because of slash

user id -- not allowed because of space

The next examples show that adjoining and trailing dollar signs, underscores, and number signs are allowed:

money$$$tree

SN##

try_again_

You can use upper, lower, or mixed case to write identifiers. PL/SQL is not case sensitive except within string

and character literals. So, if the only difference between identifiers is the case of corresponding letters, PL/SQL

considers the identifiers to be the same, as the following example shows:

last name

LastName -- same as last name

LASTNAME -- same as last name and LastName

The size of an identifier cannot exceed 30 characters. Identifiers should be descriptive.

Reserved Words

Some identifiers, called reserved words, have a special syntactic meaning to PL/SQL and so should not be

redefined. For example, the words BEGIN and END, which bracket the executable part of a block or

271 | P a g e

subprogram, are reserved. As the next example shows, if you try to redefine a reserved word, you get a

compilation error:

DECLARE

 end BOOLEAN; -- not allowed; causes compilation error

However, you can embed reserved words in an identifier, as the following example shows:

DECLARE

 end_of_game BOOLEAN; -- allowed

Predefined Identifiers

Identifiers globally declared in package STANDARD, such as the exception INVALID_NUMBER, can be

redeclared. However, redeclared predefined identifiers is error prone because your local declaration overrides

the global declaration.

Quoted Identifiers

For flexibility, PL/SQL lets you enclose identifiers within double quotes. Quoted identifiers are seldom needed,

but occasionally they can be useful. They can contain any sequence of printable characters including spaces

but excluding double quotes. Thus, the following identifiers are valid:

"X+Y"

"last name"

"on/off switch"

"employee(s)"

272 | P a g e

Lesson 13.2: Usage of the Declarative Section to Define Identifiers

Your program stores values in variables and constants. As the program executes, the values of variables can

change, but the values of constants cannot.

You can declare variables and constants in the declarative part of any PL/SQL block, subprogram, or package.

Declarations allocate storage space for a value, specify its datatype, and name the storage location so that you

can reference it.

Syntax: DECLARE

 ….

BEGIN

 ….

END

SQL Example:

SET SERVEROUTPUT ON;

DECLARE

 birthday DATE;

 emp_count SMALLINT := 0;

 credit_limit CONSTANT REAL := 5000.00;

BEGIN

 emp_count:=10;

 DBMS_OUTPUT.PUT_LINE('There are ' || emp_count || ' in

the company');

END;

Query Results: anonymous block completed

There are 10 in the company

Explanation: The first declaration names a variable of type DATE. The second declaration names

a variable of type SMALLINT and uses the assignment operator to assign an initial

value of 0 to the variable. The third declaration names a constant of type REAL and

assigns an initial (also final) value of 5000 to the constant. . A constant must be

initialized in its declaration

Code file: Code13_2_1.sql

273 | P a g e

Lesson 13.3: Use variables to store data

Variables

A variable in PL/SQL is an item used to store variable data values. Variables are mainly used for storage of

data and manipulation of stored values. Variables can store any PL/SQL object such as variables, types, cursors,

and subprograms. Reusability is another advantage of declaring variables. After the variables are declared,

you can use them repeatedly in an application by referring to them multiple times in various statements.

Rules for Creating Variables and Constants

There are several things to consider when constructing both variables and constants.

• Names given to variables and constants should be unique. They should not be given names used by
database objects. For example, if you have a column name of “annual_salary” do not create a variable
called “annual_salary”. If problems occur the database object will take precedence over the PL/SQL
variable or constant.

• Names given are not case sensitive.
• Variables or constants are given assigned values each time the block of code is entered.
• Each variable or constant declared must be terminated with a semi-colon.
• Forward referencing of variables or constants is not allowed in PL/SQL

There are several different types of variable that can be used in PL/SQL.

System variables

System variables are items that hold data the value of which is controlled by Oracle. For example: current

date and time is held in the “SYSDATE” system variable the user logged in is held in the “USER” system

variable System variables can be referenced at any point within the block of code.

PL/SQL parameters

A PL/SQL Parameter is an explicitly declared variable that is created and used with other PL/SQL objects; for

example, Procedures and Functions. PL/SQL parameters will be discussed later in this manual and are used

with a key element of the PL/SQL language called Cursors.

PL/SQL variables

PL/SQL variables are the most common type of variables used in PL/SQL. These are variables defined in the

declaration section of a block of PL/SQL code. A developer will be normally creating PL/SQL variables to: Store

values retrieved from the database that require to be referenced and manipulated in the code Store the result

of calculations or expressions; for example, a variable may store the total amount of the tax to be paid by an

employee.

274 | P a g e

Creating a PL/SQL Variable

The syntax required for creating a PL/SQL variable is as follows:

variable_name datatype [DEFAULT| :=][value|exp

After a unique name has been provided, the variable must be assigned a datatype. This indicates which type

of data can be held in the variable i.e. a number, text, date. By default, each time a block of code is executed

any variables created are assigned the value NULL. A variable containing a null value could cause problems to

occur when it is used in a calculation, i.e. a null value added to a value equals a null result. To avoid this,

variables can be assigned a value, this is achieved by using either the:

:= (the assignment operator) or DEFAULT keyword

Syntax: identifier_name datatype [DEFAULT| :=][value|exp];

SQL Example:

DECLARE

v_deptno NUMBER(4) NOT NULL := 10;

v_jobid VARCHAR(10);

BEGIN

 SELECT department_id, job_id

 INTO v_deptno,v_jobid

 FROM employees

 WHERE employee_id=120;

END;

Query Results: anonymous block completed

Explanation: All PL/SQL identifiers must be declared in the declaration section before referencing

them in the PL/SQL block. You have the option of assigning an initial value to a

variable. You do not need to assign a value to a variable in order to declare it. If you

refer toother variables in a declaration, be sure that they are already declared

separately in a previous statement.

Code file: Code13_3_1.sql

275 | P a g e

Constants

A constant is a PL/SQL item that is used to store static values. For example, a block of code may require a tax

rate in a calculation which will be a static value. Therefore, the value could be assigned to a PL/SQL constant.

Creating constants reduces the chance of side effects in the code; if a variable is created, there is the possibility

that the value could be changed during the execution of the code.

Creating a PL/SQL Constant

Syntactically constants are very similar to variables:

Syntax:

constant_name CONSTANT datatype [DEFAULT|:=] [value|expression];

Constants must be assigned a value when defined.

Syntax: constant_name CONSTANT datatype [DEFAULT|:=]

[value|expression];

SQL Example:

DECLARE

 v_tax CONSTANT NUMBER(4,2):=0.25;

 v_salary NUMBER(9,2):=10000;

 v_pay NUMBER(9,2);

BEGIN

 v_pay:=v_salary*v_tax;

 DBMS_OUTPUT.PUT_LINE('Pay is ' || v_pay);

END;

Query Results: anonymous block completed

Pay is 2500

Explanation: In this example a constant has been created to hold the value of the tax rate to be

applied to the salary.

Code file: Code13_3_2.sql

276 | P a g e

Lesson 13.4: Identify Scalar Data Types

Datatypes

In the last sections we looked at defining variables and constants. Each item must be given a datatype to

ensure that only the correct type of data can be assigned.

There are two categories of datatype that can be created:

User Defined Datatypes

User defined types in Oracle are more complex data types based on the built-in (standard) data types and can

be used in both Oracle PL/SQL and in SQL. In this section of the course we will only consider the Oracle defined

datatype as these are the most widely used.

Oracle Defined Datatypes

There are a very large number of different datatypes that could be used in PL/SQL.

 In this section we shall consider some the most common data types. The Oracle data type can be split into 4

main groups:

• Scalar
• Composite
• Reference
• Large Object

277 | P a g e

Scalar Datatypes

PL/SQL provides a variety of predefined data types for example integer. A scalar data type holds a single value

and has no internal components. Scalar data types can be classified into four categories: number, character,

date, and Boolean.

Datatype Description

NUMBER Floating point numeric

NUMBER(p) Numeric that can accept digits up to a maximum number of fixed points e.g. Number(10)

indicates a maximum of 10 point numeric

NUMBER(p,s) Numeric that can accept digits up to a maximum number of fixed points with a scale e.g.

Number(10,2) indicates a numeric with a maximum of 10 points 2 of which are decimals

CHAR[n] Fixed length characters up to a specified amount of alphanumerics or bytes. These can

accept up to a maximum of 32767 bytes/characters.

VARCHAR2(n) Variable length characters up to a specified amount of alphanumerics or bytes. These

can accept up to a maximum of 32767 bytes/characters.

VARCHAR(n) Same as VARCHAR2.

DATE Fixed length dates / times.

BOOLEAN Logical values. Can hold only the values TRUE, FALSE or NULL.

ROWID Internal identifier of storage row in table

LONG Variable length character storage up to a maximum of 32760 bytes. (Oracle database

columns can store up to 2Mb long columns)

RAW Variable length binary data storage.

LONG RAW Variable length binary data storage up to a maximum of 32760 bytes. (Oracle database

columns can store up to 2Mb in a LONG RAW column)

BINARY_INTEGER Base type for integers between –2,147,483,647 and 2,147,483,647

PLS_INTEGER Base type for signed integers between –2,147,483,647 and 2,147,483,647.

PLS_INTEGER values require less storage and are faster than NUMBER values. In

Oracle Database 11g, the PLS_INTEGER and BINARY_INTEGER data types are

identical. The arithmetic operations on PLS_INTEGER and

BINARY_INTEGER values are faster than on NUMBER values.

278 | P a g e

BINARY_FLOAT Represents floating-point number in IEEE 754 format. It requires 5 bytes to store the

value.

BINARY_DOUBLE Represents floating-point number in IEEE 754 format. It requires 9 bytes to store the

value.

TIMESTAMP The TIMESTAMP data type, which extends the DATE data type, stores the year, month,

day, hour, minute, second, and fraction of second. The syntax is TIMESTAMP[(precision)],

where the optional parameter precision specifies the number of digits in the fractional

part of the seconds field. To specify the precision, you must use an integer in the range

0–9. The default is 6.

TIMESTAMP WITH

TIME ZONE

The TIMESTAMP WITH TIME ZONE data type, which extends the TIMESTAMP data type,

includes a time-zone displacement. The time-zone displacement is the difference (in

hours and minutes) between local time and Coordinated Universal Time (UTC), formerly

known as Greenwich Mean Time. The syntax is TIMESTAMP[(precision)] WITH TIME

ZONE, where the optional parameter precision specifies the number of digits in the

fractional part of the seconds field. To specify the precision, you must use an integer in

the range 0–9.

The default is 6.

TIMESTAMP WITH

LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE data type, which extends the TIMESTAMP data

type, includes a time-zone displacement. The time-zone displacement is the difference

(in hours and minutes) between local time and Coordinated Universal Time (UTC),

formerly known as Greenwich Mean Time. The syntax is TIMESTAMP[(precision)] WITH

LOCAL TIME ZONE, where the optional parameter precision specifies the number of

digits in the fractional part of the seconds field. You cannot use a symbolic constant or

variable to specify the precision; you must use an integer literal in the range 0–9. The

default is 6. This data type differs from TIMESTAMP WITH TIME ZONE in that when you

insert a value into a database column, the value is normalized to the database time zone,

and the time-zone displacement is not stored in the column. When you retrieve the

value, the Oracle server returns the value in your local session time zone.

INTERVAL YEAR

TO MONTH

You use the INTERVAL YEAR TO MONTH data type to store and manipulate intervals of

years and months. The syntax is INTERVAL YEAR[(precision)] TO MONTH, where

precision specifies the number of digits in the years field. You cannot use a symbolic

constant or variable to specify the precision; you must use an integer literal in the range

0–4. The default is 2.

INTERVAL DAY TO

SECOND

You use the INTERVAL DAY TO SECOND data type to store and manipulate intervals of

days, hours, minutes, and seconds. The syntax is INTERVAL DAY[(precision1)] TO

SECOND[(precision2)], where precision1 and precision2 specify the number of digits in

the days field and seconds field, respectively. In both cases, you cannot use a symbolic

279 | P a g e

constant or variable to specify the precision; you must use an integer literal in the range

0–9. The defaults are 2 and 6, respectively.

Large Object Datatypes

These were introduced with version 8 of the Oracle Database and will eventually replace LONG and LONG

RAW datatypes as the method of working with large amount of text or binary data.

Data Type Description

BFILE References files stored on an external file system.

BLOB Large binary objects stored in the database for example Image files, Word documents,

etc.

CLOB Large character blocks stored in the database.

280 | P a g e

Time zones

The figure below shows the effects of the different datetime datatypes on a datetime value as it moves from

a user in one time zone through the database to another user in a different time zone.

The figure shows the user Jonathan in the Eastern Time Zone, which is five hours behind Coordinated Universal

Time (UTC). Jonathan stores the same datetime value in four database fields. The datetime value is

represented using ANSI/ISO standard notation, and in this case represents 3:00 PM (15:00:00.00) Eastern

Standard Time (-5:00) on Feb 6, 2002 (2002-02-06).

The database in the figure is in the Mountain Standard Time Zone. Notice how the database representation

varies with each of the different datetime datatypes. DATE and TIMESTAMP totally ignore the time zone

difference between the user and the database. They also don’t preserve the original time zone, so that

information is lost along with any knowledge of the time the user really was referring to. The TIMESTAMP

WITH TIME ZONE column preserves the time zone information and represents the exact time, from his point

of view, that Jonathan entered the values. Compare this with the behavior of the TIMESTAMP WITH LOCAL

TIME ZONE column. Here, you see that the time has been converted from Eastern Time into Mountain Time,

the database’s local time zone. The correct time has been preserved, but the point of view has been lost;

we no longer know the time zone in which the time was entered.

Donna, like the database, is in the Mountain Standard Time Zone. Notice the values she gets back when she

queries the database for the four values Jonathan entered. The DATE and TIMESTAMP values are completely

misleading. Jonathan entered a value at 3:00 PM Eastern Time, and Donna now sees that as 3:00 PM Mountain

281 | P a g e

Time. The situation is much better with the other datatypes. Donna sees the TIMESTAMP WITH TIME ZONE

value exactly as it was originally entered and can see that Jonathan entered an Eastern Standard Time value.

Donna sees the correct time for the TIMESTAMP WITH LOCAL TIME ZONE value (1:00 PM Mountain Time is

equivalent to 3:00 PM Eastern Time), but she has no idea what time zone was used to enter the value

originally.

282 | P a g e

Lesson 13.5: The %TYPE Attribute

In many cases variables will be created to hold data retrieved from the database. It is possible that table

column definitions could change after a block of code has been created and executed successfully. This could

lead to major problems in an application. For example, the LAST_NAME column may be changed to allow a

larger name to be inserted, however the variables may be limited to a smaller number of characters. To avoid

this a datatype can be anchored to a column in a database table.

Syntax:

variable_name [owner].table.column_name%TYPE;

Syntax: variable_name [owner].table.column_name%TYPE;

SQL Example:

DECLARE

v_deptno employees.department_id%type;

v_jobid employees.job_id%type;

v_lastname employees.last_name%type;

BEGIN

 SELECT department_id, job_id, last_name

 INTO v_deptno,v_jobid,v_lastname

 FROM employees

 WHERE employee_id=120;

END;

Query Results: anonymous block completed

Explanation: The datatype is anchored to a column in a database table

Code file: Code13_5_1.sql

283 | P a g e

Lesson 13.6: Bind Variables

Bind variables are variables that you create in a host environment. For this reason, they are sometimes called

host variables. Bind variables are created in the environment and not in the declarative section of a PL/SQL

block. Therefore, bind variables are accessible even after the block is executed. When created, bind variables

can be used and manipulated by multiple subprograms. They can be used in SQL statements and PL/SQL blocks

just like any other variable. These variables can be passed as runtime values into or out of PL/SQL subprograms.

Note: A bind variable is an environment variable, but is not a global variable.

Creating Bind Variables

To create a bind variable in SQL Developer, use the VARIABLE command. For example, you declare a variable

of type NUMBER and VARCHAR2 as follows:

VARIABLE return_code NUMBER

VARIABLE return_msg VARCHAR2(30)

Syntax: VARIABLE identifier DataType

SQL Example:

VARIABLE b_result NUMBER;

BEGIN

SELECT (SALARY*12) + NVL(COMMISSION_PCT,0) INTO :b_result

FROM employees WHERE employee_id = 144;

 DBMS_OUTPUT.PUT_LINE('Result is ' || :b_result);

END;

Query Results: anonymous block completed

Result is 30000

Explanation: Bind variable declaration

Code file: Code13_6_1.sql

284 | P a g e

Lesson 13.7: Sequences in PL/SQL Expressions

In Oracle Database 11g, you can use the NEXTVAL and CURRVAL pseudocolumns in any PL/SQL context, where

an expression of the NUMBER data type may legally appear. Although the old style of using a SELECT statement

to query a sequence is still valid, it is recommended that you do not use it.

Before Oracle Database 11g, you were forced to write a SQL statement in order to use a sequence object value

in a PL/SQL subroutine. Typically, you would write a SELECT statement to reference the pseudocolumns of

NEXTVAL and CURRVAL to obtain a sequence number. This method created a usability problem.

DECLARE

v_new_id NUMBER;

BEGIN

SELECT my_seq.NEXTVAL INTO v_new_id FROM Dual;

END;

In Oracle Database 11g, the limitation of forcing you to write a SQL statement to retrieve a sequence value is

eliminated. With the sequence enhancement feature:

• Sequence usability is improved

• The developer has to type less

• The resulting code is clearer

DECLARE

v_new_id NUMBER;

BEGIN

v_new_id := my_seq.NEXTVAL;

END;

285 | P a g e

Section 14: Write Executable Statements

In this section you will:

• Describe Basic PL/SQL Block Syntax Guidelines
• Learn to Comment the Code
• Deployment of SQL Functions in PL/SQL
• How to convert Data Types?
• Describe Nested Blocks
• Identify the Operators in PL/SQL

286 | P a g e

Lesson 14.1: Describe Basic PL/SQL Block Syntax Guidelines

Lexical Units in a PL/SQL Block

Lexical units include letters, numerals, special characters, tabs, spaces, returns, and symbols.

Identifiers

Identifiers are the names given to PL/SQL objects. You learned to identify valid and invalid identifiers. Recall

that keywords cannot be used as identifiers.

Quoted identifiers

• Make identifiers case-sensitive.
• Include characters such as spaces.
• Use reserved words.

Examples:

"begin date" DATE;

"end date" DATE;

"exception thrown" BOOLEAN DEFAULT TRUE;

All subsequent usage of these variables should have double quotation marks. However, use of quoted

identifiers is not recommended.

Delimiters:

Delimiters are symbols that have special meaning. You already learned that the semicolon (;) is used to

terminate a SQL or PL/SQL statement. Therefore, ; is an example of a delimiter.

Literals:

Any value that is assigned to a variable is a literal. Any character, numeral, Boolean, or date value that is not

an identifier is a literal. All string literals have the data type CHAR or VARCHAR2 and are, therefore, called

character literals (for example, John, and 12C).

287 | P a g e

Lesson 14.2: Learn to Comment the Code

Commenting Code

You should comment code to document each phase and to assist debugging. In PL/SQL code:

• A single-line comment is commonly prefixed with two hyphens (--)

• You can also enclose a comment between the symbols /* and */

It is good programming practice to explain what a piece of code is trying to achieve. However, when you

include the explanation in a PL/SQL block, the compiler cannot interpret these instructions. Therefore, there

should be a way in which you can indicate that these instructions need not be compiled. Comments are mainly

used for this purpose.

288 | P a g e

Lesson 14.3: Use of SQL Functions in PL/SQL

SQL Functions in PL/SQL

SQL provides several predefined functions that can be used in SQL statements. Most of these functions such

as single-row number and character functions, data type conversion functions, and date and time-stamp

functions are valid in PL/SQL expressions.

Syntax: Variable:=sqlfunction(,,,);

SQL Example:

DECLARE

 v_result NUMBER(10,2);

BEGIN

 SELECT (SALARY*12) + NVL(COMMISSION_PCT,0) INTO

 v_result

 FROM employees WHERE employee_id = 144;

 v_result:=round(v_result,0);

 DBMS_OUTPUT.PUT_LINE('Result is ' || v_result);

END;

Query Results:

anonymous block completed

Result is 30000

Explanation: The Sql round function is used in PLSQL block

Code file: Code14_3_1.sql

The following functions are not available in procedural statements:

• DECODE

• Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE

289 | P a g e

Lesson 14.4: How to convert Data Types

In any programming language, converting one data type to another is a common requirement. PL/SQL can

handle such conversions with scalar data types. Data type conversions can be of two types:

Implicit conversions

PL/SQL attempts to convert data types dynamically if they are mixed in a statement.

Implicit conversions can be between:

• Characters and numbers
• Characters and dates

Syntax

SQL Example:

DECLARE

v_salary NUMBER(6):=6000;

v_sal_hike VARCHAR2(5):='1000';

v_total_salary v_salary%TYPE;

BEGIN

v_total_salary:=v_salary + v_sal_hike;

END;

Query Results: …

Explanation: In this example, the sal_hike variable is of the VARCHAR2 type. When calculating

the total salary, PL/SQL first implicitly converts sal_hike to NUMBER, and then

performs the operation. The result is a the NUMBER type

Code file: Code14_4_1.sql

290 | P a g e

Explicit conversions

 To convert values from one data type to another, use built-in functions. For example, to convert a CHAR value

to a DATE or NUMBER value, use TO_DATE or TO_NUMBER, respectively.

SQL Example:

DECLARE

-- implicit data type conversion

v_date1 DATE:= '02-Feb-2000';

-- error in data type conversion

v_date2 DATE:= 'February 02,2000';

-- explicit data type conversion

v_date3 DATE := TO_DATE('February 02,2000','Month DD,

YYYY');

BEGIN

DBMS_OUTPUT.PUT_LINE(v_date1);

END;

Query Results: Error report -

ORA-01858: a non-numeric character was found where a

numeric was expected

ORA-06512: at line 6

01858. 00000 - "a non-numeric character was found where

a numeric was expected"

…

Explanation: v-date1 successful, v_date2 fails to convert

Code file: Code4_2_14.sql

291 | P a g e

Lesson 14.5: Describe Nested Blocks

Being procedural gives PL/SQL the ability to nest statements. You can nest blocks wherever an executable

statement is allowed, thus making the nested block a statement. If your executable section has code for many

logically related functionalities to support multiple business requirements, you can divide the executable

section into smaller blocks. The exception section can also contain nested blocks.

When you access this variable in the inner block, PL/SQL first looks for a local variable in the inner block with

that name. There is no variable with the same name in the inner block, so PL/SQL looks for the variable in the

outer block.

Syntax: DECLARE

 ….

BEGIN

 DECLARE

 ….

 BEGIN

 ….

 END;

END;

SQL Example:

DECLARE

v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';

BEGIN

DECLARE

v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';

BEGIN

DBMS_OUTPUT.PUT_LINE(v_inner_variable);

DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

DBMS_OUTPUT.PUT_LINE(v_outer_variable);

END;

Query Results: anonymous block completed

LOCAL VARIABLE

GLOBAL VARIABLE

GLOBAL VARIABLE

292 | P a g e

Explanation: The v_outer_variable variable is declared in the outer block and the v_inner_variable

variable is declared in the inner block.v_outer_variable is local to the outer block but

global to the inner block. When you access this variable in the inner block, PL/SQL first

looks for a local variable in the inner block with that name. There is no variable with the

same name in the inner block, so PL/SQL looks for the variable in the outer block.

Therefore, v_outer_variable is considered to be the global variable for all the enclosing

blocks. You can access this variable in the inner block. Variables declared in a PL/SQL block

are considered local to that block and global to all its subblocks. v_inner_variable is local

to the inner block and is not global because the inner block does not have any nested

blocks. This variable can be accessed only within the inner block. If PL/SQL does not find

the variable declared locally, it looks upward in the declarative section of the parent

blocks. PL/SQL does not look downward in the child blocks.

Code file: Code14_5_1.sql

293 | P a g e

Variable Scope and Visibility

• The scope of a variable is the portion of the program in which the variable is declared and is accessible.
• The visibility of a variable is the portion of the program where the variable can be accessed without

using a qualifier.

Syntax: DECLARE

 ….

BEGIN

 DECLARE

 ….

 BEGIN

 ….

 END;

END;

SQL Example:

DECLARE

 v_name VARCHAR2(20):='Bill';

 v_date DATE:='2-Apr-2014';

BEGIN

 DECLARE

 v_other_name VARCHAR2(20):='Mike';

 v_date DATE:='3-Jan-2002';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Name: '||v_name);

 DBMS_OUTPUT.PUT_LINE('Date: '||v_date);

 DBMS_OUTPUT.PUT_LINE('other Name: '||v_other_name);

 END;

 DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date);

END;

Query Results: anonymous block completed

Name: Bill

Date: 03-JAN-02

other Name: Mike

Date of Birth: 02-APR-14…

Explanation: The v_name variable and the first occurrence of the v_date variable are declared in

the outer block. These variables have the scope of the block in which they are

declared.

The v_other_name and v_date variables are declared in the inner block or the

nested block. These variables are accessible only within the nested block and are

not accessible in the outer block. These variables have the scope of the block in

which they are declared.

294 | P a g e

The v_date variable declared in the outer block has scope even in the inner block.

However, this variable is not visible in the inner block because the inner block has a

local variable with the same name.

Code file: Code14_5_2.sql

295 | P a g e

Qualifier

A qualifier is a label given to a block. You can use a qualifier to access the variables that have scope but are

not visible. Labeling is not limited to the outer block. You can label any block.

Syntax: BEGIN <<qualifier>>

DECLARE

 ….

BEGIN

 DECLARE

 ….

 BEGIN

 ….

 END;

END;

END;

SQL Example:

BEGIN <<block1>>

 DECLARE

 v_name VARCHAR2(20):='Bill';

 v_date DATE:='2-Apr-2014';

 BEGIN

 DECLARE

 v_other_name VARCHAR2(20):='Mike';

 v_date DATE:='3-Jan-2002';

 BEGIN

 DBMS_OUTPUT.PUT_LINE('Name: '||v_name);

 DBMS_OUTPUT.PUT_LINE('Date: '||block1.v_date);

 DBMS_OUTPUT.PUT_LINE('Date: '||v_date);

 DBMS_OUTPUT.PUT_LINE('other Name: '||v_other_name);

 END;

 DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date);

 END;

END;

Query Results: anonymous block completed

Name: Bill

Date: 02-APR-14

Date: 03-JAN-02

other Name: Mike

Date of Birth: 02-APR-14

296 | P a g e

Explanation: The outer v_date is now accessible. Within the inner block, the outer qualifier is used to

access the v_date variable that is declared in the outer block.

Code file: Code14_5_3.sql

Lesson 14.6: Identify the Operators in PL/SQL

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulation. PL/SQL language is rich in built-in operators and provides the following types

of operators:

Arithmetic Operators

Operator Description

+ Adds two operands

- Subtracts second operand from the first

* Multiplies both operands

/ Divides numerator by de-numerator

** Exponentiation operator, raises one operand to the

power of other

Relational Operators

Operator Description

= Checks if the values of two operands are equal or not, if yes then

condition becomes true.

!=

<>

~=

Checks if the values of two operands are equal or not, if values

are not equal then condition becomes true.

> Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.

< Checks if the value of left operand is less than the value of right

operand, if yes then condition becomes true.

>= Checks if the value of left operand is greater than or equal to the

value of right operand, if yes then condition becomes true.

<= Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

297 | P a g e

Comparison Operators

Operator Description

LIKE The LIKE operator compares a character, string, or CLOB value to a

pattern and returns TRUE if the value matches the pattern and

FALSE if it does not.

BETWEEN The BETWEEN operator tests whether a value lies in a specified

range. x BETWEEN a AND b means that x >= a and x <= b.

IN The IN operator tests set membership. x IN (set) means that x is

equal to any member of set.

IS NULL The IS NULL operator returns the BOOLEAN value TRUE if its

operand is NULL or FALSE if it is not NULL. Comparisons involving

NULL values always yield NULL.

Logical Operators

Operator Description

and Called logical AND operator. If both the operands are true then

condition becomes true.

or Called logical OR Operator. If any of the two operands is true

then condition becomes true.

not Called logical NOT Operator. Used to reverse the logical state

of its operand. If a condition is true then Logical NOT operator

will make it false.

PL/SQL Operator Precedence

Operator precedence determines the grouping of terms in an expression. This affects how an expression is

evaluated.

Operator Operation

** exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

=, <, >, <=, >=, <>, !=, ~=, ^=,

IS NULL, LIKE, BETWEEN, IN

comparison

NOT logical negation

AND conjunction

OR inclusion

298 | P a g e

Programming Guidelines

Follow programming guidelines shown below to produce clear code and reduce maintenance when

developing a PL/SQL block. The following table provides guidelines for writing code in uppercase or lowercase

characters to help distinguish keywords from named objects.

Statement Convention

SQL statements Uppercase SELECT, INSERT

PL/SQL keywords Uppercase DECLARE, BEGIN, IF

Data types Uppercase VARCHAR2, BOOLEAN

Identifiers and parameters Lowercase v_sal, emp_cursor, g_sal, p_empno

Database tables Lowercase, plural employees, departments

Database columns Lowercase, singular employee_id,

Indenting Code

For clarity and enhanced readability, indent each level of code. To show structure, you can divide lines by using

carriage returns and you can indent lines by using spaces and tabs. Compare the following IF statements for

readability:

IF x > y THEN

max := x;

ELSE

max := y;

END IF;

299 | P a g e

Section 15: Interaction with the Oracle Server

In this section you will:

• Invoke SELECT INTO Statements in PL/SQL
• Retrieve Data in PL/SQL
• SQL Cursor concept
• Data Manipulation in the Server using PL/SQL
• Use SQL Cursor Attributes to Obtain Feedback on DML
• Save and Discard Transactions

Lesson 15.1: Invoke SELECT Statements in PL/SQL

In a PL/SQL block,

• You use SQL statements to retrieve and modify data from the database table. PL/SQL supports data

manipulation language (DML) and transaction control commands. You can use DML commands to

modify the data in a database table. However, remember the following points while using DML

statements and transaction control commands in PL/SQL blocks:

• The END keyword signals the end of a PL/SQL block, not the end of a transaction. Just as a block can

span multiple transactions, a transaction can span multiple blocks.

• PL/SQL does not directly support data definition language (DDL) statements such as CREATE TABLE,

ALTER TABLE, or DROP TABLE.

• DDL statements cannot be directly executed. These statements are dynamic SQL statements. Dynamic

SQL statements are built as character strings at run time and can contain placeholders for parameters.

Therefore, you can use dynamic SQL to execute your DDL statements in PL/SQL.

• PL/SQL does not directly support data control language (DCL) statements such as GRANT or REVOKE.

You can use dynamic SQL to execute them.

300 | P a g e

Lesson 15.2: Retrieve Data in PL/SQL

A SELECT statement in PL/SQL is normally known as a SELECT INTO statement. The reason for this is that data

retrieved from the database will require to be placed into variables.

Syntax

SELECT col1|expression1,

 col2|expression2…

INTO variable1,

 variable2….

FROM table1|view1,

 Table2|view2….

WHERE condition

[GROUP BY]

[HAVING]

[ORDER BY];

There is a major limitation to the SELECT INTO statement as it can only retrieve one row of data. In many

cases the developer will require to process multiple rows of data therefore the SELECT INTO will not be suitable.

If your requirement is to retrieve multiple rows and operate on the data, you can make use of explicit cursors.

• Use the SELECT statement to retrieve data from the database.

• Every value retrieved must be stored in a variable by using the INTO clause.

• The WHERE clause is optional and can be used to specify input variables, constants, literals, and

PL/SQL expressions. However, when you use the INTO clause, you should fetch only one row; using

the WHERE clause is required in such cases.

• Specify the same number of variables in the INTO clause as the number of database columns in the

SELECT clause. Be sure that they correspond positionally and that their data types are compatible.

• The INTO clause is required.

• Queries must return only one row.

301 | P a g e

Use Select INTO

Syntax: SELECT col1|expression1,

 col2|expression2…

INTO variable1,

 variable2….

FROM table1|view1,

 Table2|view2….

WHERE condition

[GROUP BY]

[HAVING]

[ORDER BY];

SQL Example:

DECLARE

v_fname VARCHAR2(25);

v_lname VARCHAR2(25);

BEGIN

 SELECT first_name, last_name

 INTO v_fname,v_lname

 FROM employees WHERE employee_id=100;

 DBMS_OUTPUT.PUT_LINE(' First Name is : '||v_fname);

 DBMS_OUTPUT.PUT_LINE(' Last Name is : '||v_lname);

END;

Query Results: anonymous block completed

 First Name is : Steven

 Last Name is : King

Explanation:

Code file: Code15_2_1.sql

302 | P a g e

Lesson 15.3: SQL Cursor concept

A cursor is a pointer to the private memory area allocated by the Oracle Server. It is used to handle the result

set of a SELECT statement.

There are two types of cursors: implicit and explicit.

Implicit:

Created and managed internally by the Oracle Server to process SQL statements

Explicit:

Declared explicitly by the programmer covered in section 18

Implicit Cursor Attributes

These attributes will return information about SELECT INTO, INSERT, UPDATE and DELETE statements.

As implicit cursors are not manually assigned a name the syntax is slightly different. The name SQL is assigned

to implicit cursors

Syntax

SQL%attribute_name

%NOTFOUND Implicit Attribute

The %NOTFOUND can hold only Boolean values i.e. TRUE, FALSE or NULL. The %NOTFOUND will hold the value

TRUE if the DML (INSERT, UPDATE, DELETE or SELECT) statement causes rows to be affected. Otherwise the

value held will be FALSE.

%FOUND Cursor Attribute

The %FOUND attribute can hold only Boolean values i.e. TRUE, FALSE or NULL. %FOUND will hold the value

FALSE if the DML (INSERT, UPDATE, DELETE or SELECT) statement causes no rows to be affected. Otherwise

the value held will be TRUE.

%ISOPEN Cursor Attribute

The %ISOPEN attribute is not applicable to be used. It will always hold the value FALSE as Oracle automatically

closes the cursor after it is executed.

%ROWCOUNT Cursor Attribute

The %ROWCOUNT will hold the number of rows processed by DML statements.

303 | P a g e

Syntax: SELECT col1|expression1,

 col2|expression2…

INTO variable1,

 variable2….

FROM table1|view1,

 Table2|view2….

WHERE condition

[GROUP BY]

[HAVING]

[ORDER BY];

SQL%attribute_name

SQL Example:

DECLARE

v_fname VARCHAR2(25);

v_lname VARCHAR2(25);

BEGIN

 SELECT first_name, last_name

 INTO v_fname,v_lname

 FROM employees WHERE employee_id=100;

 IF sql%found THEN

 DBMS_OUTPUT.PUT_LINE(' First Name is : '||v_fname);

 DBMS_OUTPUT.PUT_LINE(' Last Name is : '||v_lname);

 DBMS_OUTPUT.PUT_LINE(' Count is : '||sql%ROWCOUNT);

 END IF;

END;

Query Results: anonymous block completed

 First Name is : Steven

 Last Name is : King

 Count is : 1

Explanation: The SELECT INTO statement returns the first and last name into variables and

uses the SQL attributes to determine row count

Code file: Code15_3_1.sql

304 | P a g e

Lesson 15.4: Data Manipulation in the Server using PL/SQL

Inserting Data

An INSERT statement is used within a PL/SQL block to insert a record into a table.

Syntax: BEGIN

INSERT…

END;

SQL Example:

BEGIN

INSERT INTO employees

(employee_id, first_name, last_name, email,

hire_date, job_id, salary)

VALUES(employees_seq.NEXTVAL, 'Jim', 'Bell',

'RCORES',CURRENT_DATE, 'AD_ASST', 1500);

END;

Query Results: anonymous block completed

Explanation: The PL/SQL block inserts a new employee

Code file: Code15_4_1.sql

Updating Data

Use the UPDATE statement to change data

Syntax: DECLARE

BEGIN

UPDATE …

END;

SQL Example:

DECLARE

sal_increase employees.salary%TYPE := 800;

BEGIN

UPDATE employees

SET salary = salary + sal_increase

WHERE job_id = 'ST_CLERK';

END;

305 | P a g e

Query Results: anonymous block completed

Explanation: The PL/SQL block increases the salary of all employees who are stock clerks.

Code file: Code15_4_2.sql

Deleting Data

Use the UPDATE statement to change data:

Syntax: DECLARE

BEGIN

DELETE …

END;

SQL Example:

DECLARE

v_empid employees.department_id%TYPE := 1010;

BEGIN

DELETE FROM employees

WHERE employee_id = v_empid;

IF SQL%NOTFOUND THEN

 DBMS_OUTPUT.PUT_LINE('Employee ' || v_empid || ' not

found');

END IF;

END;

Query Results: anonymous block completed

Explanation: Delete rows that belong to employee 1010 from the employees table.

Code file: Code15_4_3.sql

306 | P a g e

 Merging Rows

The MERGE statement inserts or updates rows in one table by using data from another table. Each row is

inserted or updated in the target table depending on an equijoin condition.

Syntax: DECLARE

BEGIN

MERGE…

END;

SQL Example:

BEGIN

MERGE INTO copy_emp c

USING employees e

ON (e.employee_id = c.empno)

WHEN MATCHED THEN

UPDATE SET

c.first_name = e.first_name,

c.last_name = e.last_name,

c.email = e.email,

c.phone_number = e.phone_number,

c.hire_date = e.hire_date,

c.job_id = e.job_id,

c.salary = e.salary,

c.commission_pct = e.commission_pct,

c.manager_id = e.manager_id,

c.department_id = e.department_id

WHEN NOT MATCHED THEN

INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,

e.salary, e.commission_pct, e.manager_id,

e.department_id);

END;

Query Results:

Explanation: The example shown matches the empno column in the copy_emp table to the

employee_id column in the employees table. If a match is found, the row is updated

to match the rowin the employees table. If the row is not found, it is inserted into

the copy_emp table..

Code file: N/A

Note: Transactions with end following either:

COMMIT; --Confirms changes made

ROLLBACK; --Removed changes made since the last COMMIT

307 | P a g e

Section 16: Control Structures

In this section you will:

• Conditional processing using IF Statements
• Conditional processing using CASE Statements
• Describe simple Loop Statement
• Describe While Loop Statement
• Describe For Loop Statement
• Use the Continue Statement

The PL/SQL language has the many of the standard techniques found in other programming languages to allow

movement and control flow through a block of code. This chapter will consider these features in detail.

To control the flow through a block of PL/SQL code the developer has the following features available:

Loops – these allow the same code to be executed a specific number of times. For example, our code may

require checking and processing a batch of 1000 data records.

Conditional Statements – these are normally referred to as IF statements. They allow data to be evaluated

and specific actions performed based on the results of the evaluation.

308 | P a g e

Lesson 16.1: Conditional processing using IF Statements

The IF conditional statement is one of the most common features of the PL/SQL language. It allows the

developer to conditionally control the transition through the code.

For example, a block of code may require the following:

A check to find out the number of years the person has worked in the company and based on it:

IF the person has worked less than 2 years their holiday entitlement should be 20 days.

IF the person has worked between 2 years and 5 years their entitlement should be 22 days.

IF the person has worked more than 5 years their holiday entitlement should be 25 days.

The syntax required is for an IF statement is as follows:

IF condition THEN

 Statement;

[ELSIF condition THEN

 Statement;]

[ELSE

 Statement;]

END IF;

• The ELSIF section is optional and it is possible to have multiple ELSIF commands. The ELSE is also an
optional command.

• The syntax of the IF statement is very prone to typing errors.

The most common errors are:

• END IF must be 2 words. In other languages it is one-word ENDIF
• ELSIF has only one “E”. A common mistake is to add another i.e. ELSEIF.
• Ensure that the THEN keyword is used with IF and ELSIF but not included with the ELSE keyword.

309 | P a g e

IF statement

Syntax: IF condition THEN

 Statement;

[ELSIF condition THEN

 Statement;]

[ELSE

 Statement;]

END IF;

SQL Example:

DECLARE

 v_mydept number:=31;

BEGIN

IF v_mydept < 11 THEN

 UPDATE departments

 set manager_id=100

 where department_id <11;

ELSIF v_mydept < 20 THEN

 DBMS_OUTPUT.PUT_LINE(' For review ');

ELSE

 DBMS_OUTPUT.PUT_LINE(' OK ');

END IF;

END;

Query Results: anonymous block completed

 OK

Explanation: The example below evaluates a variable and updates records if department is <11

Code file: Code16_1_1.sql

310 | P a g e

Lesson 16.2: Conditional processing using CASE Statements

We have two types of CASE functionality:

• CASE Expressions
• CASE statements

PL/SQL Case Expressions

Return a value to a variable based on the value of a single variable or expression. The value is determined

based on a selector which is a comparison operator 2 types of CASE expressions

• Simple

• Searched

Simple Case Expressions

Evaluated against a single expression

Syntax:

Variable:= CASE selector

WHEN expression1 THEN result1

WHEN expression2 THEN result2 ...

[ELSE result]

END;

Syntax: Variable:= CASE selector

WHEN expression1 THEN result1

WHEN expression2 THEN result2 ...

[ELSE result]

END;

SQL Example:

DECLARE

v_deptid number:=4;

v_deptname varchar(50);

BEGIN

v_deptname := case v_deptid

 when 1 then 'Sales'

 when 2 then 'IT'

 when 3 then 'IS'

 when 4 then 'TRAINING'

 else

 'Unknown'

end;

DBMS_OUTPUT.PUT_LINE(v_deptname);

311 | P a g e

END;

Query Results: anonymous block completed

TRAINING

Explanation: Uses the simple case to evaluate a variable

Code file: Code16_2_1.sql

Searched Case Expressions

Evaluated against a single expression

Syntax:

Variable:= CASE

WHEN search_expression1 THEN result1

WHEN search_expression2 THEN result2 ...

[ELSE result]

END;

Syntax: Variable:= CASE

WHEN search_expression1 THEN result1

WHEN search_expression2 THEN result2 ...

[ELSE result]

END;

SQL Example:

DECLARE

v_deptid number:=4;

v_deptname varchar(50);

BEGIN

v_deptname := case

 when v_deptid = 1 then 'Sales'

 when v_deptid = 2 then 'IT'

 when v_deptid = 3 then 'IS'

 when v_deptid = 4 then 'TRAINING'

 else

 'Unknown'

end;

DBMS_OUTPUT.PUT_LINE(v_deptname);

END;

Query Results: anonymous block completed

TRAINING

312 | P a g e

Explanation: Uses the simple case to evaluate a variable

Code file: Code16_2_1.sql

Lesson 16.3: Describe simple Loop Statement

The Simple loop is often referred to as an infinite loop as the basic syntax if would repeat the execution of the

code infinitely, and therefore crash the code.

Syntax:

LOOP

 --statement

END LOOP;

To avoid an infinite loop the EXIT command is required to ensure the loop is terminated.

Syntax:

EXIT WHEN condition;

Or

EXIT;

The condition can use the standard SQL logical operators ie. <, >,=, <> etc.

For example

EXIT WHEN employee_id =1000;

313 | P a g e

Syntax: LOOP

 --statement

 EXIT WHEN condition;

END LOOP;

SQL Example:

DECLARE

v_deptid NUMBER(10):=1;

BEGIN

LOOP

 INSERT INTO departments (department_id,

department_name)

 Values (v_deptid,'Dept' ||v_deptid);

 DBMS_OUTPUT.PUT_LINE('Dept' ||v_deptid);

 v_deptid:=v_deptid+1;

 EXIT WHEN v_deptid =10;

END LOOP ;

END;

Query Results:

Dept1

Dept2

Dept3

Dept4

Dept5

Dept6

Dept7

Dept8

Dept9

Explanation: The example on the next page uses a simple loop to populate a table with an

incremented value

Code file: Code16_3_1.sql

314 | P a g e

Lesson 16.4: Describe While Loop Statement

The main difference between the Simple loop and the While loop is the While loop will evaluate the

continuation condition at the beginning of the loop (in the loop header) rather than in a statement in the main

body of the loop.

Syntax:

WHILE condition LOOP

 Statements…

END LOOP;

The example below uses a while loop to populate a table with an incremented value.

Syntax: WHILE condition LOOP

 Statements…

END LOOP;

SQL Example:

DECLARE

v_deptid NUMBER(10):=1;

BEGIN

 WHILE v_deptid =10 LOOP

 INSERT INTO departments (department_id,

department_name)

 Values (v_deptid,'Dept' ||v_deptid);

 DBMS_OUTPUT.PUT_LINE('Dept' ||v_deptid);

 v_deptid:=v_deptid+1;

END LOOP ;

END;

Query Results: Dept1

Dept2

Dept3

Dept4

Dept5

Dept6

Dept7

Dept8

Dept9

Explanation: The example on the next page uses a simple loop to populate a table with an

incremented value

Code file: Code16_4_1.sql

315 | P a g e

316 | P a g e

Lesson 16.5: Describe For Loop Statement

There are two types of For Loop:

• A numeric For loop
• A Cursor For loop (covered in Section 18)
•

The numeric FOR loop moves through the loop for a specific number of iterations. The loop has a start and

end point and a numeric index controls the movements through the loop.

Syntax:

FOR variable IN [REVERSE] low_value ..high_value LOOP

 Executable_statements…

END LOOP;

The variable used in the FOR LOOP does not require to be defined in the declaration section of the PL/SQL

code. It will be implicitly declared in the loop and will only exist for the duration of the loop. The low value

and high value must be integers. When the loop is started the low value is assigned to the variable and each

transition of the loop will increment the variable by 1. The loop will terminate after the variable has reached

the high value and completed the final transition. If the REVERSE keyword is used the variable will start at the

high value and decrement the variable by 1 until the low value is reached and completed.

• Reference the counter only within the loop; it is undefined outside the loop.
• Do not reference the counter as the target of an assignment.

• Neither loop bound should be NULL.

Syntax: FOR variable IN [REVERSE] low_value ..high_value

LOOP

 Executable_statements…

END LOOP;

SQL Example:

BEGIN

 FOR v_deptid IN 1 .. 10 LOOP

 INSERT INTO departments (department_id,

department_name)

 Values (v_deptid,'Dept' ||v_deptid);

 DBMS_OUTPUT.PUT_LINE('Dept' ||v_deptid);

END LOOP ;

317 | P a g e

END;

Query Results: Dept1

Dept2

Dept3

Dept4

Dept5

Dept6

Dept7

Dept8

Dept9

Explanation: The example uses a for loop to populate a table with an incremented value

Code file: Code16_5_1.sql

318 | P a g e

Lesson 16.6: Use the Continue Statement

The CONTINUE statement enables you to transfer control within a loop back to a new iteration or to leave the

loop. Many other programming languages have this functionality. With the Oracle Database 11g release,

PL/SQL also offers this functionality. Before the Oracle Database 11g release, you could code a workaround

by using Boolean variables and conditional statements to simulate the CONTINUE programmatic functionality.

In some cases, the workarounds are less efficient.

The CONTINUE statement offers you a simplified means to control loop iterations. It may be more efficient

than the previous coding workarounds. The CONTINUE statement is commonly used to filter data within a

loop body before the main processing begins.

Syntax: FOR variable IN [REVERSE] low_value ..high_value LOOP

 Executable_statements…

END LOOP;

SQL Example:

BEGIN

 FOR v_deptid IN 1 .. 10 LOOP

 if v_deptid = 3 then

 CONTINUE;

 END IF;

 INSERT INTO departments (department_id, department_name)

 Values (v_deptid,'Dept' ||v_deptid);

 DBMS_OUTPUT.PUT_LINE('Dept' ||v_deptid);

END LOOP ;

END;

Query Results: Dept1

Dept2

Dept4

Dept5

Dept6

Dept7

Dept8

Dept9

Explanation: The example on the next page uses a simple loop to populate a table with an incremented

value

Code file: Code16_6_1.sql

319 | P a g e

320 | P a g e

Section 17: Composite Data Types

In this section you will:

• Use PL/SQL Records
• The %ROWTYPE Attribute
• Insert and Update with PL/SQL Records
• INDEX BY Tables
• Examine INDEX BY Table Methods
• Use INDEX BY Table of Records

Composite Data Types

You learned that variables of the scalar data type can hold only one value, whereas a variable of the composite

data type can hold multiple values of the scalar data type or the composite data type. There are two types of

composite data types:

PL/SQL records

Records are used to treat related but dissimilar data as a logical unit. A PL/SQL record can have variables of

different types. For example, you can define a record to hold employee details. This involves storing an

employee number as NUMBER, a first name and last name as VARCHAR2, and so on. By creating a

record to store employee details, you create a logical collective unit. This makes data access and manipulation

easier.

PL/SQL collections: Collections are used to treat data as a single unit. Collections are of three types:

 Associative array
 Nested table

 VARRAY

321 | P a g e

Use PL/SQL records when you want to store values of different data types that are logically related. For

example, you can create a PL/SQL record to hold employee details and indicate that all the values stored are

related because they provide information about a particular employee.

Use PL/SQL collections when you want to store values of the same data type. Note that this data type can also

be of the composite type (such as records). You can define a collection to hold the first names of all employees.

Lesson 17.1: Use PL/SQL Records

A record is a group of related data items stored in one data structure. The developer can place or retrieve

information from fields within a record, which are equivalent of columns in a table. A record can only hold

one row (a record) at any time.

Records can be either:

Oracle defined structures

Or

User defined structures

Oracle Defined Records

These are records, which are created and controlled by Oracle. They allow a record to be created based on

either the columns in a table row or the items retrieved from a cursor.

All that is required by the developer is to define a name for the record and associated it to an Oracle defined

type.

The %TYPE is used to declare a variable of the column type. The variable has the same data type and size as

the table column. The benefit of %TYPE is that you do not have to change the variable if the column is altered.

322 | P a g e

The %ROWTYPE attribute is used to declare a record that can hold an entire row of a table or view. The fields

in the record take their names and data types from the columns of the table or view. The record can also store

an entire row of data fetched from a cursor or cursor variable.

Syntax

record_name table_name%ROWTYPE;

record_name cursor_name%ROWTYPE;

To reference a field with a record, use the following syntax:

record_name.column_name_or_alias

Syntax: record_name table_name%ROWTYPE;

SQL Example:

DECLARE

 t_emprec employees%ROWTYPE;

BEGIN

 t_emprec.first_name:='Bob';

 DBMS_OUTPUT.PUT_LINE(t_emprec.first_name);

END;

Query Results: anonymous block completed

Bob

Explanation:

Code file: Code17_1_1.sql

User Defined Records

There are 2 steps to creating records.

Define the record type – this is the structure of the record

Declare the record – this involves giving the record a name and assigning the record type to it

323 | P a g e

The syntax to define a record is:

TYPE type_name IS RECORD

(field_1 datatype,

[,field_2 datatype….];

Example:

TYPE car_emp_rec IS RECORD

(emp_id number,

last_name employee.last_name%type,

reg_number cars.regno%type);

Syntax: TYPE type_name IS RECORD

(field_1 datatype,

[,field_2 datatype….];

SQL Example:

DECLARE

TYPE car_rec IS RECORD

(

carname varchar(50),

reg_number varchar(50)

);

v_mycar car_rec;

BEGIN

v_mycar.carname:='Mini';

DBMS_OUTPUT.PUT_LINE(v_mycar.carname);

END;

Query Results: anonymous block completed

Mini

Explanation: The example below shows a basic example of defining, declaring and assigning values

to fields in a record.

Code file: Code17_1_2.sql

324 | P a g e

Lesson 17.2: Insert and Update with PL/SQL Records

Prior to Oracle 9i if we wished to insert the row of data in a record into a table, we would require to reference

each value during the insert statement.

 For example:

INSERT INTO table_name

VALUES (record.value1, record.value2);

In Oracle 9i it is possible to insert an entire record into a table using the insert statement.

Syntax:

INSERT INTO table_name

VALUES record_name;

Syntax: INSERT INTO table_name

VALUES record_name;

SQL Example:

DECLARE

 t_deptrec departments%rowtype;

BEGIN

t_deptrec.department_id:=0;

t_deptrec.department_name:='Support';

t_deptrec.manager_id:=200;

t_deptrec.location_id:=1700;

INSERT INTO Departments

VALUES t_deptrec;

END;

Query Results: anonymous block completed

Explanation: In this example we are inserting the entire record into the department table.

Code file: Code17_2_1.sql

325 | P a g e

PL/SQL record can be used to update multiple columns in table as one entity without specifying each value.

Syntax:

UPDATE table

SET ROW = record_name

WHERE…;

Example:

Syntax: UPDATE table

SET ROW = record_name

WHERE…;

SQL Example:

DECLARE

 t_deptrec departments%rowtype;

BEGIN

t_deptrec.department_id:=0;

t_deptrec.department_name:='Support';

t_deptrec.manager_id:=200;

t_deptrec.location_id:=1700;

UPDATE departments

SET ROW=t_deptrec

WHERE department_id=0;

END;

Query Results: anonymous block completed

Explanation: In this example we are updating the entire record in the department table.

Code file: Code17_2_1.sql

326 | P a g e

Lesson 17.3: INDEX BY Tables

Collections

These are items that can be created to hold groups of related data items. Unlike records, collections can hold

multiple rows of data. They are most commonly used to pass large amounts of data between sub programs.

For example, you may populate a collection with the information from the employees table, use it in

subprogram1 and then pass it as a parameter to subprogram2. This can be a very efficient way to operate.

There are 3 types of collection that can be used in PL/SQL:

Index by Tables (Associative Array’s)

Varray’s

Nested Tables

Index by Tables

Index by tables are memory-based structures that consist of 2 columns.

The main column is the actual data structure, which can be a standard data type i.e. a number, varchar2, etc.,

or a record. The other column is a binary index value, which must be unique for each row in the table.

The data held within the index by table is unconstrained, in other words there is no defined limit to the number

of rows entered. The index column can be sparse, which means the index value does not have to be in

sequential order. For example, the first row entered in the table can have the index value 2000 and the second

could have the index value 2.

There are 2 parts to creating an Index by Tables:

1. Define the Index by table
Syntax:

TYPE type_name IS TABLE OF data_type

INDEX BY BINARY_INTEGER;

For example:

TYPE emp_tab_type IS TABLE OF varchar2

INDEX BY BINARY_INTEGER;

327 | P a g e

2. Declare a table of that the defined type
Syntax:

table_name index_table_type;

For example:

emp_list emp_tab_type;

The syntax to populate an index by table is:

table_name(index):=value;

For example:

emp_list(1) :=’SMITH’;

Syntax: TYPE type_name IS TABLE OF data_type

INDEX BY BINARY_INTEGER;

table_name index_table_type;

SQL Example:

DECLARE

 TYPE products IS TABLE OF VARCHAR2(30)

 INDEX BY BINARY_INTEGER;

 t_products products;

BEGIN

 t_products(1) := 'HP PC';

 t_products(2) := 'CD Writer';

 t_products(3) := 'DVD';

DBMS_OUTPUT.PUT_LINE('Product Code "B001" = ' ||

t_products(1));

END;

Query Results: anonymous block completed

Product Code 1 = HP PC

Explanation:

Code file: Code17_3_1.sql

The example above creates an index by table and populates it with an index from the emp_id column and the

table value from the last_name column as shown below.

328 | P a g e

Index Value

1 HP PC

2 CD Writer

3 DVD

329 | P a g e

Associative Arrays

New name for PL/SQL Index By Tables. Do not have to index by binary integer, can index by string

Syntax:

TYPE type_name IS TABLE OF datatype

INDEX BY varchar2(n);

Index value must be unique

Syntax: TYPE type_name IS TABLE OF data_type

INDEX BY BINARY_INTEGER;

table_name index_table_type;

SQL Example:

DECLARE

 TYPE products IS TABLE OF VARCHAR2(30)

 INDEX BY VARCHAR2(4);

 t_products products;

BEGIN

 t_products('A001') := 'HP PC';

 t_products('B001') := 'CD Writer';

 t_products('B002') := 'DVD';

DBMS_OUTPUT.PUT_LINE('Product Code "B001" = ' ||

t_products('B001'));

END;

Query Results: anonymous block completed

Product Code "B001" = HP PC

Explanation:

Code file: Code17_3_2.sql

Index Value

A001 HP PC

B001 CD Writer

B002 DVD

330 | P a g e

Lesson 17.5: Examine INDEX BY Table Methods

Collection methods can be used to operate and manipulate collections.

Method Name Description

Exists(n) Used to check if the entry is already used. It will return false if the row does not exist or true

if it does.

e.g.

IF car_nested.exists(2) =false then

car_nested(2):=’FORD’;…

COUNT This will return the number of elements in the collection.

e.g.

DBMS_OUTPUT.PUT_LINE(car_nested.count);

FIRST and LAST Return the first and last index values in a collection. Often used with a for loop.

e.g.

FOR cnt IN car_nested.first..car_nested.last LOOP

NEXT and PRIOR Return the next and prior index values in a collection

DELETE Removes either single or multiple entries from a collection. E.g. car_nest.delete

331 | P a g e

Lesson 17.6: Use INDEX BY Table of Records

As previously discussed, an associative array that is declared as a table of scalar data type can store the details

of only one column in a database table. However, there is often a need to store all the columns retrieved by a

query. The INDEX BY table of records option enables one array definition to hold information about all the

fields of a database table.

Creating and Referencing a Table of Records

• Use the %ROWTYPE attribute to declare a record that represents a row in a database table

• Refer to fields within the dept_table array because each element of the array is a record

The differences between the %ROWTYPE attribute and the composite data type PL/SQL record are as follows:

• PL/SQL record types can be user-defined, whereas %ROWTYPE implicitly defines the record.

• PL/SQL records enable you to specify the fields and their data types while declaring them. When you

use %ROWTYPE, you cannot specify the fields. The %ROWTYPE attribute represents a table row with

all the fields based on the definition of that table.

• User-defined records are static, but %ROWTYPE records are dynamic—they are based on a table

structure. If the table structure changes, the record structure also picks up the change

332 | P a g e

Index by table of records using RowType

Syntax:

SQL Example:

DECLARE

TYPE dept_table_type IS TABLE OF

departments%ROWTYPE INDEX BY PLS_INTEGER;

dept_table dept_table_type;

-- Each element of dept_table is a record

Begin

SELECT * INTO dept_table(1) FROM departments

WHERE department_id = 10;

DBMS_OUTPUT.PUT_LINE(dept_table(1).department_id ||

dept_table(1).department_name

||dept_table(1).manager_id);

END;

Query Results: anonymous block completed

10Administration200

Explanation: Index by table of records using RowType

Code file: Code17_6_1.sql

333 | P a g e

Syntax:

SQL Example:

DECLARE

TYPE emp_table_type IS TABLE OF

employees%ROWTYPE INDEX BY PLS_INTEGER;

my_emp_table emp_table_type;

max_count NUMBER(3):= 104;

BEGIN

FOR i IN 100..max_count

LOOP

SELECT * INTO my_emp_table(i) FROM employees

WHERE employee_id = i;

END LOOP;

FOR i IN my_emp_table.FIRST..my_emp_table.LAST

LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);

END LOOP;

END;

Query Results: anonymous block completed

10Administration200

Explanation: Index by table of records using RowType

Code file: Code17_6_2.sql

334 | P a g e

Section 18: Explicit Cursors

In this section you will learn:

• What are Explicit Cursors?
• Declare the Cursor
• Open the Cursor
• Fetch data from the Cursor
• Close the Cursor
• Cursor FOR loop
• The %NOTFOUND and %ROWCOUNT Attributes
• Describe the FOR UPDATE Clause and WHERE CURRENT Clause

335 | P a g e

Lesson 18.1: What are Explicit Cursors?

Explicit Cursors are cursors that are explicitly defined in the declaration section of the PL/SQL code. Unlike

implicit cursors the developer is responsible for manually performing the required actions. Explicit cursors

can only be created for SELECT statements and therefore cannot be used with INSERT, UPDATE and DELETE

commands.

An explicit cursor could be viewed as a virtual temporary table that exists and can be referenced from memory.

336 | P a g e

There are several manual steps that require to be performed with explicit cursors:

PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor. The cursor

marks the current position in the active set.

1. The OPEN statement executes the query associated with the cursor, identifies the active set, and positions

the cursor at the first row.

2. The FETCH statement retrieves the current row and advances the cursor to the next row until there are no

more rows or a specified condition is met.

3. The CLOSE statement releases the cursor.

337 | P a g e

Lesson 18.2: Declare the Cursor

The first step is to define the cursor in the declaration section of the code. This involves providing a name for

the cursor and defining the SELECT statement to be used.

The basic syntax for creating a cursor is as follows:

CURSOR cursor_name IS

select statement;

The name of the cursor must be unique and up to 30 characters in length. Many cursors can be defined in the

declaration section.

DECLARE

CURSOR c_emp_cursor IS

SELECT employee_id, last_name FROM employees

WHERE department_id =30;

Do not include the INTO clause in the cursor declaration because it appears later in the FETCH statement.

• If you want the rows to be processed in a specific sequence, use the ORDER BY clause in the query.

• The cursor can be any valid SELECT statement, including joins, subqueries, and so on.

Declaring Variables

The next step is to define variables to hold the data that is to be retrieved from the cursor.

DECLARE

CURSOR c_emp_cursor IS

SELECT employee_id, last_name FROM employees

WHERE department_id =30;

V_employee_id employees.employee_id%type;

V_last_name employees.last_name%type;

338 | P a g e

Lesson 18.3: Open the Cursor

Although defined in the declaration section the select statement is not executed until the cursor is opened.

Each cursor requires to be opened with the OPEN command.

Syntax:

OPEN cursor_name;

The open command only executes the query; the data is not retrieved until the next step.

OPEN c_emp_cursor;

Lesson 18.4: Fetch data from the Cursor

To retrieve the data from an open cursor the FETCH command is used. It places the data into the variables

that have been defined.

Syntax:

FETCH cursor_name INTO variable1, variable2..;

The variable list in the FETCH command must match the order of the columns in the SELECT statement.

The FETCH command will only return one row of data, which will be first row of the subset of data retrieved.

Therefore a FETCH command would require to be repeated so each row of data in the select statement can

be retrieved.

The fetch command moves the pointer to the first row of the subset and places the data into the referenced

variables, as shown below.

 FETCH c_emp_cursor INTO V_employee_id, V_last_name;

LAST_NAME ANNUAL_SALARY ANNUAL_BONUS

MACDONALD 15500

WELSH 12500

CALDERWOOD 15000

Each time a fetch command is found for an open cursor the pointer is moved to the next row within the subset.

For example, if we add an additional fetch the pointer will move to the data for WELSH, as shown below.

339 | P a g e

 FETCH c_emp_cursor INTO V_employee_id, V_last_name;

LAST_NAME ANNUAL_SALARY ANNUAL_BONUS

MACDONALD 15500

WELSH 12500

CALDERWOOD 15000

The following code iterates through all the records.

LOOP

FETCH c_emp_cursor INTO V_employee_id, V_last_name;

EXIT WHEN c_emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(V_employee_id ||' '|| V_last_name);

END LOOP;

Lesson 18.5: Close the Cursor

Explicit cursors should always be closed once they are no longer required. Although in most cases the code

could be successfully executed without closing the cursor it is good practice to always close. If the cursor is

left open it is taking memory that no longer is required and could lead to problems of locked data.

Syntax:

CLOSE cursor_name;

340 | P a g e

Syntax: DECLARE

CURSOR cursor_name IS ….

OPEN cursor_name;

LOOP

FETCH cursor_name INTO variable1, variable2..;

EXIT WHEN cursor_name %NOTFOUND;

END LOOP;

CLOSE cursor_name;

SQL Example:

DECLARE

 CURSOR c_emp_cursor

 IS

 SELECT employee_id, last_name FROM employees WHERE

department_id =30;

 V_employee_id employees.employee_id%type;

 V_last_name employees.last_name%type;

BEGIN

 OPEN c_emp_cursor;

 LOOP

 FETCH c_emp_cursor INTO V_employee_id, V_last_name;

 EXIT

 WHEN c_emp_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(V_employee_id ||' '||

V_last_name);

 END LOOP;

 CLOSE c_emp_cursor;

END;

Query Results: anonymous block completed

114 Raphaely

115 Khoo

116 Baida

117 Tobias

118 Himuro

119 Colmenares

Explanation: Explicit cursor – to access more than 1 row of data

Code file: Code18_2_1.sql

341 | P a g e

Lesson 18.6: Cursor FOR loop

The explicit cursor for loop can save development time, as it does not require all the steps considered earlier

in this chapter for explicit cursors.

The steps detailed earlier for explicit cursors were as follows:

1. Declare the cursor
2. Create storage variables for the data
3. Open the cursor
4. Fetch the data into variables
5. Close the cursor

If a Cursor for loop is used the only step required is:

Declare the cursor

The rest of the steps are automatically maintained by the system.

• A storage record is implicitly created for the data
• The system will automatically execute the query as part of the loop
• The data will be fetched row by row into the storage record
• Once there is no more data to retrieve the loop will close

Syntax:

FOR record_name IN cursor_name LOOP

 Statements…;

END LOOP;

Syntax: FOR record_name IN cursor_name LOOP

 Statements…;

END LOOP;

SQL Example:

DECLARE

 CURSOR c_emp_cursor

 IS

 SELECT employee_id, last_name FROM employees WHERE

department_id =30;

BEGIN

 FOR c_rec IN c_emp_cursor

 LOOP

342 | P a g e

 DBMS_OUTPUT.PUT_LINE(c_rec.employee_id ||' '||

c_rec.last_name);

 END LOOP;

END;

Query Results: 114 Raphaely

115 Khoo

116 Baida

117 Tobias

118 Himuro

119 Colmenares…

Explanation: If a Cursor for loop is used to iterate through all the records

Code file: Code18_6_1.sql

The cursor for loop can save development time but will not always be suitable. It should only be used if all the

rows in the cursor require to be processed. In more complicated examples many cursors will be used, which

will require multiple open, fetch and close command to be performed manually. The cursor for loop will not

be suitable for these more complicated scenarios

343 | P a g e

Lesson 18.7: The %NOTFOUND and %ROWCOUNT Attributes

Cursor attributes can be applied and used with both implicit and explicit cursors. However, they tend to be

more commonly found with explicit cursors.

Explicit Cursor Attributes

The syntax for explicit cursors is as follows:

cursor_name%attribute_name

For example

c_low_pay%notfound

%NOTFOUND Attribute

%FOUND Cursor Attribute

%ISOPEN Cursor Attribute

%ROWCOUNT Cursor Attribute

Syntax:

SQL Example:

DECLARE

 CURSOR c_emp_cursor

 IS

 SELECT employee_id, last_name FROM employees WHERE

department_id =30;

 V_employee_id employees.employee_id%type;

 V_last_name employees.last_name%type;

BEGIN

 OPEN c_emp_cursor;

 LOOP

 FETCH c_emp_cursor INTO V_employee_id, V_last_name;

 EXIT

 WHEN c_emp_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(V_employee_id ||' '||

V_last_name || ' ' ||c_emp_cursor%rowcount);

 END LOOP;

 CLOSE c_emp_cursor;

END;

Query Results: 114 Raphaely 1

115 Khoo 2

116 Baida 3

344 | P a g e

117 Tobias 4

118 Himuro 5

119 Colmenares 6 …

Explanation: Row count attribute increments for each iteration

Code file: Code18_7_1.sql

Lesson 18.8: Describe the FOR UPDATE Clause and WHERE CURRENT Clause

When declaring an explicit cursor it is possible to assign an exclusive lock on the rows of data. This is achieved

by using the FOR UPDATE and CURRENT OF clauses.

The FOR UPDATE clause can be added to the select statement within the cursor. If added, a lock will be place

on the rows retrieved by the select statement. It is possible to specify column names in the clause however a

lock will be placed on an entire record not just the individual columns.

Syntax for the FOR UPDATE clause:

CURSOR cursor_name IS

SELECT …

FOR UPDATE [OF column_name];

Syntax for the CURRENT OF:

UPDATE table_name

SET col_name = value or expression

WHERE CURRENT OF cursor_name;

DELETE FROM table_name

WHERE CURRENT OF cursor_name;

The CURRENT OF clause can be used with UPDATE and DELETE statement, if the FOR UPDATE clause has been

applied to the cursor from where data is retrieved.

Syntax: CURSOR cursor_name IS

SELECT …

FOR UPDATE [OF column_name];

SQL Example: DECLARE

 CURSOR c_emp_cursor

345 | P a g e

 IS

 SELECT employee_id, last_name FROM employees WHERE

department_id =30

 FOR UPDATE;

 V_employee_id employees.employee_id%type;

 V_last_name employees.last_name%type;

BEGIN

 OPEN c_emp_cursor;

 LOOP

 FETCH c_emp_cursor INTO V_employee_id, V_last_name;

 EXIT

 WHEN c_emp_cursor%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(V_employee_id ||' '||

V_last_name || ' ' ||c_emp_cursor%rowcount);

 UPDATE employees

 set Salary=salary*1.02

 Where current of c_emp_cursor;

 END LOOP;

 CLOSE c_emp_cursor;

END;

Query Results: 114 Raphaely 1

115 Khoo 2

116 Baida 3

117 Tobias 4

118 Himuro 5

119 Colmenares 6…

Explanation: Updates the salary field as it iterates through the records

Code file: Code18_8_1.sql

346 | P a g e

Section 19: Exception Handling

In this section you will:

• Understand Exceptions
• Handle Exceptions with PL/SQL
• Trap Predefined Oracle Server Errors
• Trap Non-Predefined Oracle Server Errors
• Trap User-Defined Exceptions
• Propagate Exceptions
• RAISE_APPLICATION_ERROR Procedure

347 | P a g e

Lesson 19.1: Understand Exceptions

An exception is an error in PL/SQL that is raised during the execution of a block. A block always terminates

when PL/SQL raises an exception, but you can specify an exception handler to perform final actions before the

block ends.

Exception are raised when

• An Oracle error occurs, and the associated exception is raised automatically.
• Depending on the business functionality your program implements, you may have to explicitly raise

an exception

There are two types of exceptions in PL/SQL:

Oracle Defined

There are a large number of pre-defined Oracle exceptions that will automatically produce error messages.

However the developer can redefine these error messages and error numbers.

User Defined

These are exceptions that are created and handled by the developer.

348 | P a g e

Lesson 19.2: Handle Exceptions with PL/SQL

An exception is an error or warning produced by PL/SQL. Exceptions can be handled within the optional

exception section. Unlike other programming languages PL/SQL provides a specific section to handle the error

or exception code. However, once the execution has moved to the exception section it is not possible to move

back to the main executable block of code. The exception section appears between the BEGIN and END

commands as shown in the diagram below.

[DECLARE

 declarations]

BEGIN

 executable statements

[EXCEPTION

349 | P a g e

You can trap any error by including a corresponding handler within the exception-handling section of the

PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception name, followed by a

sequence of statements to be executed when that exception is raised

350 | P a g e

Lesson 19.3: Trap Predefined Oracle Server Errors

You can trap any error by including a corresponding handler within the exception-handling section of the

PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception name, followed by a

sequence of statements to be executed when that exception is raised.

You can include any number of handlers within an EXCEPTION section to handle specific exceptions. However,

you cannot have multiple handlers for a single exception. Exception trapping syntax includes the following

elements:

exception Is the standard name of a predefined exception or the name of a user defined exception declared

within the declarative section

statement Is one or more PL/SQL or SQL statements OTHERS Is an optional exception-handling clause that

traps any exceptions that have not been explicitly handled

EXCEPTION

WHEN exception1 [OR exception2 . . .] THEN

statement1;

statement2;

. . .

[WHEN exception3 [OR exception4 . . .] THEN

statement1;

statement2;

. . .]

[WHEN OTHERS THEN

statement1;

statement2;

. . .]

Many of the key errors, which will occur with PL/SQL, will have exception names. The errors, which have these

exception names, are listed below.

Exception Name Oracle Error

ACCESS_INTO_NULL ORA-06530

CASE_NOT_FOUND ORA-06592

COLLECTION_IS_NULL ORA-06531

CURSOR_ALREADY_OPEN ORA-06511

DUP_VAL_ON_INDEX ORA-00001

INVALID_CURSOR ORA-01001

INVALID_NUMBER ORA-01722

351 | P a g e

LOGIN_DENIED ORA-01017

NO_DATA_FOUND ORA-01403

NOT_LOGGED_ON ORA-01012

PROGRAM_ERROR ORA-06501

ROWTYPE_MISMATCH ORA-06504

STORAGE_ERROR ORA-06500

SUBSRIPT_BEYOND_COUNT ORA-06533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532

SYS_INVALID_ROWID ORA-01410

TIMEOUT_ON_RESOURCE ORA-00051

TOO_MANY_ROWS ORA-01422

VALUE_ERROR ORA-06502

ZERO_DIVIDE ORA-01476

Syntax: SELECT *|{[DISTINCT] column|expression [alias],...}

INTO

FROM table

[WHERE condition(s)];

SQL Example:

DECLARE

v_fname VARCHAR2(25);

v_lname VARCHAR2(25);

BEGIN

 SELECT first_name, last_name

 INTO v_fname,v_lname

 FROM employees WHERE employee_id=99;

END;

Query Results: Error report -

ORA-01403: no data found

ORA-06512: at line 5

01403. 00000 - "no data found"

Explanation: Generates an error as there is no employee 99

Code file: Code19_3_1.sql

352 | P a g e

Handling the error

Syntax: EXCEPTION

WHEN exception1 [OR exception2 . . .] THEN

statement1;

statement2;

. . .

[WHEN exception3 [OR exception4 . . .] THEN

statement1;

statement2;

. . .]

[WHEN OTHERS THEN

statement1;

statement2;

. . .]

SQL Example:

DECLARE

v_fname VARCHAR2(25);

v_lname VARCHAR2(25);

BEGIN

 SELECT first_name, last_name

 INTO v_fname,v_lname

 FROM employees WHERE employee_id=99;

EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 DBMS_OUTPUT.PUT_LINE('There are too many rows');

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('No data found');

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Others');

END;

Query Results:

anonymous block completed

No data found

Explanation: The error is handled

Code file: Code19_3_2.sql

353 | P a g e

The example below will cause an exception to occur due to the Select Into statement returning multiple rows.

Syntax: EXCEPTION

WHEN exception1 [OR exception2 . . .] THEN

statement1;

statement2;

. . .

[WHEN exception3 [OR exception4 . . .] THEN

statement1;

statement2;

. . .]

[WHEN OTHERS THEN

statement1;

statement2;

. . .]

SQL Example:

DECLARE

v_fname VARCHAR2(25);

v_lname VARCHAR2(25);

BEGIN

 SELECT first_name, last_name

 INTO v_fname,v_lname

 FROM employees WHERE department_id=20;

EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 DBMS_OUTPUT.PUT_LINE('There are too many rows');

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('No data found');

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Others');

END;

Query Results:

anonymous block completed

No data found

Explanation: The example will cause an exception to occur due to the Select Into statement

returning multiple rows. The Exception block will catch it.

Code file: Code19_3_3.sql

354 | P a g e

Lesson 19.4: Trap Non-Predefined Oracle Server Errors

Non-predefined exceptions are similar to predefined exceptions; however, they are not defined as PL/SQL

exceptions in the Oracle Server. They are standard Oracle errors. You create exceptions with standard Oracle

errors by using the PRAGMA EXCEPTION_INIT function. Such exceptions are called non-predefined exceptions.

You can trap a non-predefined Oracle Server error by declaring it first. The declared exception is raised

implicitly. In PL/SQL, PRAGMA EXCEPTION_INIT tells the compiler to associate an exception name with an

Oracle error number. This enables you to refer to any internal exception by name and to write a specific

handler for it.

Syntax: PRAGMA EXCEPTION_INIT(exception_name, error_number);

SQL Example:

DECLARE

e_insert_excep EXCEPTION;

PRAGMA EXCEPTION_INIT(e_insert_excep, -01400);

BEGIN

INSERT INTO departments

(department_id, department_name) VALUES (280, NULL);

EXCEPTION

WHEN e_insert_excep THEN

DBMS_OUTPUT.PUT_LINE('INSERT OPERATION FAILED');

DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

Query Results: INSERT OPERATION FAILED

ORA-01400: cannot insert NULL into

("HR"."DEPARTMENTS"."DEPARTMENT_NAME")

Explanation: PRAGMA EXCEPTION_INIT tells the compiler to associate an exception name

e_insert_excep with an Oracle error number -01400

Code file: Code19_4_1.sql

355 | P a g e

SQLCODE and SQLERRM

The SQLCODE system variable will hold the ORA number of the exception. For example SQLCODE will hold the

value -6502 for the VALUE_ERROR exception.

The SQLERRM system variable will hold the full error number and message. For example SQLERRM will hold

the value “ORA-01422: exact fetch returns more than requested number of rows”.

The SQLCODE or SQLERRM variable are most commonly used with the WHEN OTHER exception handler.

DECLARE

error_code NUMBER;

error_message VARCHAR2(255);

BEGIN

...

EXCEPTION

...

WHEN OTHERS THEN

ROLLBACK;

error_code := SQLCODE ;

error_message := SQLERRM ;

INSERT INTO errors (e_user, e_date, error_code,

error_message) VALUES(USER,SYSDATE,error_code,

error_message);

END;

356 | P a g e

Lesson 19.5: Trap User-Defined Exceptions

In the creation of effective code, the developer will want to provide error handling to ensure the execution of

the code is successful and without side effects.

There are 3 steps involved in creating user-defined exceptions:

1. Define the exception. This involves declaring an exception and providing a name that can be referred
to in the code.

2. Raise the exception. This is where the exception is called in the main executable section.
3. Handle the exception. This involves writing the PL/SQL code in the exception section of the block.

Defining the Exception

The first step is to declare the exception. Exceptions are declared in the similar way as variables and constants.

The syntax is shown below:

exception_name EXCEPTION;

For example

declare

err_late EXCEPTION;

begin

…..

Raising the Exception

The exception name is called from the main executable code using the RAISE command. This command is

normally used as part of a conditional section of the code i.e. an IF statement. Once the exception is raised it

will move the execution of the code to the EXCEPTION section. The code can never return to main execution

statement once it has navigated into the EXCEPTION section.

The syntax for raising the exception is as follows:

RAISE exception_name;

For example

IF …. THEN

raise err_late;

…

357 | P a g e

Handling the Exception

Once raised the execution of the code has moved to the Exception section. This is where the actions to be

performed are created and therefore the handling code is entered. For example, we may require an error

message to be displayed or information entered into an auditing table. The EXCEPTION is handled by a WHEN

clause that operates in a similar way to an IF statement.

Syntax:

WHEN exception_name THEN

PL/SQL statement;

[WHEN exception_name OR exception_name THEN

PL/SQL statement;]

[WHEN OTHERS THEN

PL/SQL statement;]

For example:

EXCEPTION

WHEN err_late THEN

INSERT INTO…..;

END;

Syntax: exception_name EXCEPTION;

RAISE exception_name;

EXCEPTION

WHEN err_late THEN

INSERT INTO…..;

END;

SQL Example:

DECLARE

 v_deptno NUMBER := 500;

 v_name VARCHAR2(20) := 'Testing';

 e_invalid_department EXCEPTION;

BEGIN

 UPDATE departments

 SET department_name = v_name

 WHERE department_id = v_deptno;

 IF SQL%NOTFOUND THEN

 RAISE e_invalid_department;

 END IF;

 COMMIT;

EXCEPTION

358 | P a g e

WHEN e_invalid_department THEN

 DBMS_OUTPUT.PUT_LINE('No such department id.');

END;

Query Results: anonymous block completed

No such department id.…

Explanation: Creating a user-defined exception

Code file: Code19_5_1.sql

359 | P a g e

Lesson 19.6: Propagate Exceptions

When a subblock handles an exception, it terminates normally. Control resumes in the enclosing block

immediately after the subblock’s END statement. However, if a PL/SQL raises an exception and the current

block does not have a handler for that exception, the exception propagates to successive enclosing blocks

until it finds a handler. If none of these blocks handles the exception, an unhandled exception in the host

environment results. When the exception propagates to an enclosing block, the remaining executable actions

in that block are bypassed. One advantage of this behavior is that you can enclose statements that require

their own exclusive error handling in their own block, while leaving more general exception handling to the

enclosing block. Note in the example that the exceptions (no_rows and integrity) are declared in the outer

block. In the inner block, when the no_rows exception is raised, PL/SQL looks for the exception to be handled

in the subblock. Because the exception is not handled in the subblock, the exception propagates to the outer

block, where PL/SQL finds the handler.

DECLARE

. . .

e_no_rows exception;

e_integrity exception;

PRAGMA EXCEPTION_INIT (e_integrity, -2292);

BEGIN

FOR c_record IN emp_cursor LOOP

BEGIN

SELECT ...

UPDATE ...

IF SQL%NOTFOUND THEN

RAISE e_no_rows;

END IF;

END;

END LOOP;

EXCEPTION

WHEN e_integrity THEN ...

WHEN e_no_rows THEN ...

END;

360 | P a g e

Lesson 19.7: RAISE_APPLICATION_ERROR Procedure

You can use this procedure to issue user-defined error messages from stored subprograms. You can report

errors to your application and avoid returning unhandled exceptions.

The Syntax is as follows:

RAISE_APPLICATION_ERROR (error_number, ‘message string’);

RAISE_APPLICATION_ERROR causes a fatal error; therefore the code that completed successfully prior to the

exception will be rolled back thus ensuring data integrity.

Oracle has reserved specific error numbers for this built-in. The developer can use numbers from -20001 to -

20999. When developing an application it is good practice to assign numbers to specific standard error

messages. Each Oracle exception has a name and a number in addition to the displayed message. The “exact

fetch returns more than requested number of rows” message has an ORA number of -01422 and is called

TOO_MANY_ROWS. It is possible to intercept the Oracle exception and provide alternative exception

handling. For example the message “exact fetch returns more than requested number of rows” may be

changed to a more meaningful message e.g. “More than one individuals details are returned”.

To provide alternative exception handling for Oracle predefined exceptions there are fewer steps to perform.

The developer does not require to:

Name the exception as a name has been provided by Oracle.

Raise the exception. The event, which causes the exception to occur, is defined by Oracle. Therefore, the only

step required by the developer is:

Syntax: RAISE_APPLICATION_ERROR (errnumber,errromessage)

SQL Example:

DECLARE

v_fname VARCHAR2(25);

v_lname VARCHAR2(25);

BEGIN

361 | P a g e

 SELECT first_name, last_name

 INTO v_fname,v_lname

 FROM employees WHERE department_id=20;

EXCEPTION

 WHEN TOO_MANY_ROWS THEN

 -- DBMS_OUTPUT.PUT_LINE('There are too many rows');

 RAISE_APPLICATION_ERROR(-20000, 'More than one employee in

this department');

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('No data found');

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('Others');

END;

Query Results:

Error report -

ORA-20000: More than one employee in this department

ORA-06512: at line 11

20000. 00000 - "%s"

*Cause: The stored procedure 'raise_application_error'

 was called which causes this error to be generated.

*Action: Correct the problem as described in the error message

or contact

 the application administrator or DBA for more

information.

Explanation: We have redefined the previous example to display a different error message.

Code file: Code19_3_4.sql

362 | P a g e

Section 20: Stored Procedures and functions

In this section you will:

• Create a Modularized and Layered Subprogram Design
• Modularize Development With PL/SQL Blocks
• Understand the PL/SQL Execution Environment
• List the benefits of using PL/SQL Subprograms
• List the differences between Anonymous Blocks and Subprograms
• Create, Call, and Remove Stored Procedures
• Implement Procedures Parameters and Parameters Modes
• View Procedure Information

363 | P a g e

Lesson 20.1: Create a Modularized and Layered Subprogram Design

A sub program is a block of PL/SQL code that is provided with a name and is both stored and executed from

the database.

In this chapter we shall consider the following 2 types of PL/SQL subprogram:

• Procedures
• Functions

Syntactically the 2 types of sub program are very similar to the anonymous blocks detailed over the earlier

chapters of this manual. The user will find it fairly easy to adapt to using these structures.

Anonymous blocks are unnamed executable PL/SQL blocks. Because they are unnamed, they can be neither

reused nor stored for later use.

Procedures and functions are named PL/SQL blocks that are also known as subprograms. These subprograms

are compiled and stored in the database. The block structure of the subprograms is similar to the structure of

anonymous blocks. Subprograms can be declared not only at the schema level but also within any other PL/SQL

block. A subprogram contains the following sections:

Declarative section: Subprograms can have an optional declarative section. However, unlike anonymous

blocks, the declarative section of a subprogram does not start with the DECLARE keyword. The optional

declarative section follows the IS or AS keyword in the subprogram declaration.

Executable section: This is the mandatory section of the subprogram, which contains the implementation of

the business logic. Looking at the code in this section, you can easily determine the business functionality of

the subprogram. This section begins and ends with the BEGIN and END keywords, respectively.

Exception section: This is an optional section that is included to handle exceptions.

SubProgramName

AS

 declarations]

BEGIN

 executable statements

364 | P a g e

Lesson 20.2: Understand the PL/SQL Execution Environment

All PL/SQL statements are processed in the Procedural Statement Executor, and all SQL statements must be

sent to the SQL Statement Executor for processing by the Oracle Server processes. The SQL environment may

also invoke the PL/SQL environment. For example, the PL/SQL environment is invoked when a PL/SQL function

is used in a SELECT statement. The PL/SQL engine is a virtual machine that resides in memory and processes

the PL/SQL m-code instructions. When the PL/SQL engine encounters a SQL statement, a context switch is

made to pass the SQL statement to the Oracle Server processes. The PL/SQL engine waits for the SQL

statement to complete and for the results to be returned before it continues to process subsequent

statements in the PL/SQL block.

365 | P a g e

Lesson 20.3: List the benefits of using PL/SQL Subprograms

There are several advantages that can be gained by using subprograms.

Increased performance

The anonymous block considered earlier can lead to increased performance as they/ allow blocks of SQL

statements to be sent to the database rather being sent as individual statements. This reduces the traffic

between the client and database. However, subprograms take this a step further as once compiled and stored

on the database they are executed from the database without the syntax requiring to be rechecked.

Reduce Memory Usage

Once executed the PL/SQL code from a subprogram is automatically held in the shared area of memory (SGA).

Therefore, this cached code could be reused and shared by other users. By default, the code will be timed out

of the SGA depending on the space allocated.

Reusable Code

A key feature of writing good code is its ability to be reused. It is highly likely that the same piece of code may

be required by several applications. As subprograms are stored as database objects many users can share

them. Therefore, one subprogram may be referenced by many other sub programs.

Security Tool

As previously mentioned, it is possible to share code. A developer can give others access to execute a

subprogram in a similar way to giving others access to a database table. By default, those given access will

inherit the owner’s permissions to database objects referenced by the code, for only the execution duration.

Therefore, even if a user does not have direct permission to update the employees table they will inherit it

during the execution of the code. In Oracle 8I a new feature was added to allow this behavior to be

overwritten. This new feature is known as INVOKER’s rights and will be discussed later.

366 | P a g e

Lesson 20.4: List the differences between Anonymous Blocks and Subprograms

Anonymous SubPrograms

Cannot take parameters Can take parameters

Do not return values If functions, must return values

Cannot be invoked by other applications can be invoked

Not stored in the database Stored in the database

Compiled every time Compiled only once

Unnamed PL/SQL blocks Named PL/SQL blocks

367 | P a g e

Lesson 20.5: Create a Stored Procedures

Procedures are blocks of PL/SQL code stored and executed from the database. They are normally used to

perform actions on the database, for example update rows in a table.

Basic Procedure Syntax

CREATE [OR REPLACE] PROCEDURE procedure_name

IS|AS

[declarations]

BEGIN

 executable statements…

[EXCEPTION]

END;

If OR REPLACE syntax is used it will automatically overwrite a procedure with the same name. Procedure

names must be unique to the user schema. Therefore, if we have a table called EMPLOYEES we cannot create

a procedure called EMPLOYEES.

The commands “IS” or “AS” must be used to identify the start of the declaration section. Unlike anonymous

blocks, subprograms do not require the DECLARE command. After the “AS” and “IS” the basic structure of the

Procedure is the same as an anonymous block of PL/SQL code.

368 | P a g e

 Procedures are often used to perform actions on the database, for example update rows in a table.

Syntax: CREATE [OR REPLACE] PROCEDURE procedure_name

IS|AS

[declarations]

BEGIN

 executable statements…

[EXCEPTION]

END;

SQL Example:

CREATE or REPLACE PROCEDURE upd_emp IS

v_emp_id employees.employee_id%TYPE;

BEGIN

v_emp_id:=100;

Update employees

set salary=salary*1.1

where employee_id=v_emp_id;

DBMS_OUTPUT.PUT_LINE(' Updated '|| SQL%ROWCOUNT

||' row ');

END;

Query Results: PROCEDURE UPD_EMP compiled

Explanation:

Code file: Code20_5_1.sql

369 | P a g e

Syntax: CREATE [OR REPLACE] PROCEDURE procedure_name

IS|AS

[declarations]

BEGIN

 executable statements…

[EXCEPTION]

END;

SQL Example:

CREATE or REPLACE PROCEDURE add_dept IS

v_dept_id departments.department_id%TYPE;

v_dept_name departments.department_name%TYPE;

BEGIN

v_dept_id:=280;

v_dept_name:='ST-Curriculum';

INSERT INTO departments(department_id,department_name)

VALUES(v_dept_id,v_dept_name);

DBMS_OUTPUT.PUT_LINE(' Inserted '|| SQL%ROWCOUNT

||' row ');

END;

Query Results: PROCEDURE ADD_DEPT compiled

Explanation: The above procedure will update the annual_bonus column for all trainers. They

will be provided with an annual bonus of 6% of their annual salary

Code file: Code20_5_1.sql

370 | P a g e

Lesson 20.6: Building and calling a stored procedure

There are 2 steps in building sub programs:

Step 1 -Compile the PL/SQL code

This involves running the file that contains the PL/SQL code to check the syntax and create the sub program

as an object on the database.

The picture below shows the procedure being compiled. When it compiles successfully the message

PROCEDURE CREATED will be displayed. However, the update statement will not have been executed at this

stage.

371 | P a g e

Step 2 – Executing the Procedure

This involves running the procedure. In the example above this would be when the update statement is

performed. A compiled procedure can be executed in several ways:

The syntax is:

BEGIN

 [owner.]procedure_name;

END;

372 | P a g e

Lesson 20.7: Create a function

Functions are very similar syntactically to the procedures covered in the last section. However, functions are

normally used to produce a result. For example, a function could be created to calculate the amount of tax to

be paid or the cost of a sale.

Functions must return a value for example a number, text or date.

Basic Function Syntax

CREATE [OR REPLACE] FUNCTION function_name

RETURN datatype

IS|AS

[Declaration]

BEGIN

 Executable statements…

[EXCEPTION]

END;

If OR REPLACE syntax is used it will automatically overwrite a function with the same name.

Function names must be unique to the user schema. Therefore if we have a table called EMPLOYEES we

cannot create a function called EMPLOYEES

The command “IS” or “AS” must be used to identify the start of the declaration section. Unlike anonymous

blocks subprograms do not require the DECLARE command.

After the AS or IS the basic structure of the function is the same as an anonymous block of PL/SQL code except

for the fact it must return a value of the same type specified in the function header.

Syntax: CREATE [OR REPLACE] FUNCTION function_name

RETURN datatype

IS|AS

[Declaration]

BEGIN

 Executable statements…

[EXCEPTION]

END

SQL Example: CREATE OR REPLACE FUNCTION get_empSalary

 RETURN NUMBER

373 | P a g e

 IS

 v_emp_id employees.employee_id%TYPE;

 v_Salary employees.salary%type;

BEGIN

 v_emp_id:=100;

 SELECT Salary INTO v_Salary FROM employees WHERE

employee_id=v_emp_id;

 RETURN v_Salary;

END;

Query Results: PROCEDURE UPD_EMP compiled

Explanation: Function procedure

Code file: Code20_7_1.sql

374 | P a g e

Lesson 20.8: Building and calling a function

There are 2 steps in building sub programs:

Step 1 -Compile the PL/SQL code

This involves running the file that contains the PL/SQL code to check the syntax and create the sub program

as an object on the database.

The picture below shows the procedure being compiled. When it compiles successfully the message Function

CREATED will be displayed. However, the update statement will not have been executed at this stage.

375 | P a g e

Step 2 – Executing a function

This involves running the procedure. In the example above this would be when the update statement is

performed. A compiled FUNCTION can be executed in several ways:

The syntax is:

BEGIN

 VARIABLE :=[owner.]FUNCTION_name;

;

END;

DECLARE

 v_Return NUMBER;

BEGIN

 v_Return := GET_EMPSALARY();

 DBMS_OUTPUT.PUT_LINE(v_Return);

END;

OR

SELECT GET_EMPSALARY FROM Dual

376 | P a g e

Lesson 20.9: Implement Subprogram Parameters and Parameters Modes

The 2 previous examples shown over the last few pages are a little unrealistic, as we have used hard coded

values, which can make them pretty useless and not reusable. Therefore, to create more dynamic sub

programs we can define parameters which can allow values to be passed in when the sub program is executed.

Sub program parameters are always defined directly after the name of the sub program, as shown below.

CREATE OR REPLACE SUB_PROGRAM_TYPE sub_program_name [(parameter_list)]

AS

….

It is possible to create several parameters in a parameter list. The syntax for defining a parameter is as follows:

param_name[param_type]datatype[DEFAULT|:=value]

Each parameter defined in a list must be separated with a comma.

Note the following when defining parameters:

• Parameter names should be unique and should not be given the same name as existing database
objects

• Parameter types are optional to specify but are used to define the behaviour of the parameter. We
shall consider these later in this chapter.

• The parameter datatype cannot be constrained i.e. A scale, or maximum characters or numbers
cannot be provided e.g. VARCHAR2 must be used rather that VARCHAR2(20)

• Parameters can be assigned a default value by using either the := or “DEFAULT” assignment operators.

377 | P a g e

Procedure with parameters:

Syntax: CREATE OR REPLACE SUB_PROGRAM_TYPE sub_program_name

[(parameter_list)]

AS

SQL Example:

CREATE OR REPLACE PROCEDURE add_deptWithParameters(

 p_dept_id departments.department_id%TYPE,

 p_dept_name departments.department_name%TYPE)

AS

 v_dept_name departments.department_id%TYPE;

BEGIN

 v_dept_name:=Upper(p_dept_name);

 INSERT

 INTO departments

 (

 department_id,

 department_name

)

 VALUES

 (

 p_dept_id,

 v_dept_name

);

 DBMS_OUTPUT.PUT_LINE(' Inserted '|| SQL%ROWCOUNT ||'

row ');

END

Query Results: PROCEDURE ADD_DEPTWITHPARAMETERS compiled

Explanation: Procedure with parameters

Code file: Code20_9_1.sql

378 | P a g e

Syntax: CREATE OR REPLACE SUB_PROGRAM_TYPE sub_program_name

[(parameter_list)]

AS

SQL Example:

CREATE OR REPLACE PROCEDURE upd_empWithParameters(

 p_emp_id employees.employee_id%TYPE)

IS

BEGIN

 UPDATE employees SET salary=salary*1.1 WHERE

employee_id=p_emp_id;

 DBMS_OUTPUT.PUT_LINE(' Updated '|| SQL%ROWCOUNT ||' row

');

END;

Query Results: PROCEDURE UPD_EMPWITHPARAMETERS compiled

Explanation:

Code file: Code20_9_2.sql

Execute a stored procedure

BEGIN

 UPD_EMPWITHPARAMETERS(120);

END;

379 | P a g e

Function with parameters

Syntax: CREATE OR REPLACE SUB_PROGRAM_TYPE sub_program_name

[(parameter_list)]

AS

SQL Example:

CREATE OR REPLACE FUNCTION get_empSalaryWithParameters(

 p_emp_id employees.employee_id%TYPE)

 RETURN NUMBER

IS

 v_Salary employees.salary%type;

BEGIN

 SELECT Salary INTO v_Salary FROM employees WHERE

employee_id=p_emp_id;

 RETURN v_Salary;

END;

Query Results: FUNCTION GET_EMPSALARYWITHPARAMETERS compiled

Explanation:

Code file: Code20_9_3.sql

380 | P a g e

Parameter Type (Modes)

When defining a parameter the developer has the option of providing a parameter type or mode. This controls

the behaviour of the parameter during the execution of the code. There are 3 parameter types that can be

applied:

IN (Default)

If a parameter type is not defined it will be automatically become an IN parameter. This means that the value

passed into the parameter at execution is a constant value and therefore is read only.

OUT

If a parameter is defined as OUT it will be assigned a value during the execution of the code and is therefore

similar in behaviour to a variable. OUT parameters are write only parameters and are not given a value when

the sub program is initially executed.

IN OUT

An IN OUT parameter can have a value passed to it at initial execution in the same way as an IN parameter,

but the values can be reassigned in the code in the same way as an OUT parameter. Therefore it can have the

behaviour of both IN and OUT parameters.

The types are defined using the following syntax:

param_name[IN|OUT|IN OUT] datatype[DEFAULT|:=value]

381 | P a g e

Parameter Type Examples:

This program finds the minimum of two values, here procedure takes two numbers using IN mode and returns

their minimum using OUT parameters.

Syntax: param_name[IN|OUT|IN OUT] datatype[DEFAULT|:=value]

SQL Example:

DECLARE

 a number;

 b number;

 c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number)

IS

BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

END;

BEGIN

 a:= 23;

 b:= 45;

 findMin(a, b, c);

 dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

Query Results: Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

Explanation: This program finds the minimum of two values, here procedure takes two numbers

using IN mode and returns their minimum using OUT parameters.

Code file: Code20_9_4.sql

382 | P a g e

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example shows how we can use same

parameter to accept a value and then return another result.

SQL Example:

DECLARE

 a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

 x := x * x;

END;

BEGIN

 a:= 23;

 squareNum(a);

 dbms_output.put_line(' Square of (23): ' || a);

END;

Query Results: Square of (23): 529

PL/SQL procedure successfully completed.

Code file: Code20_9_5.sql

383 | P a g e

Methods for Passing Parameters

Actual parameters could be passed in three ways:

• Positional notation
• Named notation
• Mixed notation

POSITIONAL NOTATION

In positional notation, you can call the procedure as:

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the second

actual parameter is substituted for the second formal parameter, and so on. So, a is substituted for x, b is

substituted for y, c is substituted for z and d is substituted for m.

NAMED NOTATION

In named notation, the actual parameter is associated with the formal parameter using the arrow symbol (=>

). So the procedure call would look like:

findMin(x=>a, y=>b, z=>c, m=>d);

384 | P a g e

Lesson 20.10: How to debug Functions and Procedures?

Oracle PL/SQL Debugger is a reliable tool that offers step-by-step code execution, breakpoints, watches, a call

stack, a variables evaluation mechanism to automate debugging of Oracle stored functions and procedures.

Features

• PL/SQL code, script debugging
• Step Into, Step Over, and Step Out commands for step-by-step

execution
• Breakpoints support for procedures, functions, triggers, and scripts
• Breakpoints, Call Stack, Watches windows

To start debugging:

• Open procedure
• Select Compile for Debug
• Click the on line of code that you want to break in
• Select Debug

385 | P a g e

386 | P a g e

Step Commands

387 | P a g e

Section 21: Packages

Packages are database objects that allow different types of PL/SQL objects to be grouped into a single entity.

They can consist of items such as:

• Procedures

• Functions

• Variables and Constants

• Cursors

• Collections

There are two types of PL/SQL packages used by developers:

User Defined Packages

These are PL/SQL libraries of code and other items that can be used to when constructing applications.

Oracle Supplied Packages

These are libraries of PL/SQL code and objects that Oracle has created and developed. They provide additional

features to help the developer provide specific actions. We have already encountered a package during this

course called DBMS_OUTPUT. Initially the PL/SQL language had no method of displaying information to the

screen, which caused problems to the developer. Therefore, the DBMS_OUTPUT package was introduced to

enable screen output.

388 | P a g e

Lesson 21.1: Package Specifications and body

User Defined Packages

There are 2 parts that must be created before a package can be used.

The package specification

This is the public part of the package where the entities to be created are declared. The specification is the

interface to the package. It just DECLARES the types, variables, constants, exceptions, cursors, and

subprograms that can be referenced from outside the package. In other words, it contains all information

about the content of the package but excludes the code for the subprograms.

All objects placed in the specification are called public objects. Any subprogram not in the package

specification but coded in the package body is called a private object.

The following code snippet shows a package specification having a single procedure. You can have many global

variables defined and multiple procedures or functions inside a package.

389 | P a g e

Syntax:

CREATE OR REPLACE PACKAGE package_name

AS

….

END;

CREATE PACKAGE cust_sal AS

 PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;

The package body

This is known as the private section of the package where the entities defined in the specification are fully

developed.

The package body has the codes for various methods declared in the package specification and other private

declarations, which are hidden from code outside the package. The CREATE PACKAGE BODY Statement is
used for creating the package body.

Syntax:

CREATE OR REPLACE PACKAGE BODY package_name

AS

….

END;

The following code snippet shows the package body declaration for the cust_sal package created above.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_id customers.id%TYPE) IS

 c_sal customers.salary%TYPE;

 BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line('Salary: '|| c_sal);

 END find_sal;

END cust_sal;

390 | P a g e

Using the Package Elements

The package elements (variables, procedures or functions) are accessed with the following

syntax:

package_name.element_name;

Consider, we already have created above package in our database schema, the following

program uses the find_sal method of the cust_sal package:

DECLARE

 code customers.id%type := &cc_id;

BEGIN

 cust_sal.find_sal(code);

END;

/

When the above code is executed at SQL prompt, it prompt to enter customer ID and when you enter an ID,

it displays corresponding salary as follows:

Package syntax

CREATE [OR REPLACE] PACKAGE package_name

 [AUTHID {CURRENT_USER | DEFINER}]

 {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

 [variable_declaration ...]

 [cursor_spec ...]

 [function_spec ...]

 [procedure_spec ...]

 [call_spec ...]

 [PRAGMA RESTRICT_REFERENCES(assertions) ...]

END [package_name];

[CREATE [OR REPLACE] PACKAGE BODY package_name {IS | AS}

 [PRAGMA SERIALLY_REUSABLE;]

 [collection_type_definition ...]

 [record_type_definition ...]

 [subtype_definition ...]

 [collection_declaration ...]

 [constant_declaration ...]

 [exception_declaration ...]

 [object_declaration ...]

 [record_declaration ...]

391 | P a g e

 [variable_declaration ...]

 [cursor_body ...]

 [function_spec ...]

 [procedure_spec ...]

 [call_spec ...]

[BEGIN

 sequence_of_statements]

END [package_name];]

392 | P a g e

Lesson 21.2: Advantages of Packages

There are many advantages that can be gained by building packages.

Improved Performance

When you execute a sub program from a package for the first time in a session the entire package is loaded

into memory. This means that subsequent calls to the package code will be accessed directly from memory.

Therefore, performance should be improved if code is regularly executed from the package.

Organising Code

When building an application, packages allow related items such as procedures and functions to be grouped

into single entities. This avoids having many sub programs stored in different user schemas. This ensures

effective application development.

Security

Rather than having to provide permissions on each sub program, a developer can grant execute permissions

to a package. This would give access to all the procedures and functions defined in the package.

Reusing Code

This is same advantage that is gained by using sub programs. Developers can reference the code from a

package thus provide reusable code and saving development time.

Top Down Design

As the PL/SQL package is split into the specification and body it is possible to initially define the PL/SQL objects

in the specification and then add the code to the body at a later date.

Hide Code

Because only the specification is the public part of the code it is possible to hide complex coding in the body.

393 | P a g e

Lesson 21.3: Creating Packages

Syntax: CREATE OR REPLACE PACKAGE

SQL Example:

CREATE OR REPLACE PACKAGE emp_pack

AS

 PROCEDURE upd_empWithParameters(

 p_emp_id employees.employee_id%TYPE);

 FUNCTION get_empSalaryWithParameters(

 p_emp_id employees.employee_id%TYPE)

 RETURN NUMBER;

END;

CREATE PACKAGE BODY emp_pack

AS

 PROCEDURE upd_empWithParameters(

 p_emp_id employees.employee_id%TYPE)

 IS

 BEGIN

 UPDATE employees SET salary=salary*1.1 WHERE

employee_id=p_emp_id;

 DBMS_OUTPUT.PUT_LINE(' Updated '|| SQL%ROWCOUNT ||'

row ');

 END;

 FUNCTION get_empSalaryWithParameters(

 p_emp_id employees.employee_id%TYPE)

 RETURN NUMBER

 IS

 v_Salary employees.salary%type;

 BEGIN

 SELECT Salary INTO v_Salary FROM employees WHERE

employee_id=p_emp_id;

 RETURN v_Salary;

 END;

END;

Query Results:

Explanation: The above example shows creating a package specification, which defines a

procedure and function

394 | P a g e

Code file: Code21.sql

Example of a Package

CREATE or replace PACKAGE emp_actions AS

 /* Declare externally visible types, cursor, exception. */

 TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);

 TYPE DeptRecTyp IS RECORD (dept_id INT, location VARCHAR2(50));

 CURSOR desc_salary RETURN EmpRecTyp;

 invalid_salary EXCEPTION;

 /* Declare externally callable subprograms. */

 FUNCTION hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr REAL,

 sal REAL,

 comm REAL,

 deptno REAL) RETURN INT;

 PROCEDURE fire_employee (emp_id INT);

 PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL);

 FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp;

END emp_actions;

CREATE PACKAGE BODY emp_actions AS

 number_hired INT; -- visible only in this package

 /* Fully define cursor specified in package. */

 CURSOR desc_salary RETURN EmpRecTyp IS

 SELECT empno, sal FROM emp ORDER BY sal DESC;

 /* Fully define subprograms specified in package. */

 FUNCTION hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr REAL,

 sal REAL,

 comm REAL,

 deptno REAL) RETURN INT IS

 new_empno INT;

 BEGIN

 SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;

 INSERT INTO emp VALUES (new_empno, ename, job,

 mgr, SYSDATE, sal, comm, deptno);

395 | P a g e

 number_hired := number_hired + 1;

 RETURN new_empno;

 END hire_employee;

 PROCEDURE fire_employee (emp_id INT) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

 /* Define local function, available only inside package. */

 FUNCTION sal_ok (rank INT, salary REAL) RETURN BOOLEAN IS

 min_sal REAL;

 max_sal REAL;

 BEGIN

 SELECT losal, hisal INTO min_sal, max_sal FROM salgrade

 WHERE grade = rank;

 RETURN (salary >= min_sal) AND (salary <= max_sal);

 END sal_ok;

 PROCEDURE raise_salary (emp_id INT, grade INT, amount REAL) IS

 salary REAL;

 BEGIN

 SELECT sal INTO salary FROM emp WHERE empno = emp_id;

 IF sal_ok(grade, salary + amount) THEN

 UPDATE emp SET sal = sal + amount WHERE empno = emp_id;

 ELSE

 RAISE invalid_salary;

 END IF;

 END raise_salary;

 FUNCTION nth_highest_salary (n INT) RETURN EmpRecTyp IS

 emp_rec EmpRecTyp;

 BEGIN

 OPEN desc_salary;

 FOR i IN 1..n LOOP

 FETCH desc_salary INTO emp_rec;

 END LOOP;

 CLOSE desc_salary;

 RETURN emp_rec;

 END nth_highest_salary;

BEGIN -- initialization part starts here

 INSERT INTO emp_audit VALUES (SYSDATE, USER, 'EMP_ACTIONS');

 number_hired := 0;

END emp_actions;

396 | P a g e

Referencing Items from a Package

It is possible to reference items from a package by using the following syntax:

[OWNER.]PACKAGE_NAME.OBJECT_NAME

The example below shows executing a procedure from a package.

Lesson 21.4: Scope of Packaged Items

When a session references a package item, Oracle Database instantiates the package for that session. Every

session that references a package has its own instantiation of that package.

When Oracle Database instantiates a package, it initializes it. Initialization includes whichever of the following

are applicable:

• Assigning initial values to public constants
• Assigning initial values to public variables whose declarations specify them
• Executing the initialization part of the package body

The scope of where a packaged item can be used is dependent on its location in the package. Remember we

can place items in both the specification and the body.

If items are defined in the specification, they are publicly available to any user with execute permission on the

package. Once created cursors or variables can be referenced either from the package body or from an

external block of PL/SQL code.

If the variables, constants or cursors are defined in the body of the package they are available to other

procedures and functions defined in the body. As the scope of these is in the body of the package they cannot

be referenced from out with the package.

The advantage of creating variables, constants and cursors in the package body is that they can be reused by

the functions and procedures created in the package body.

The example below shows using variables and cursors defined in the package body and then referenced in a

procedure.

CREATE OR REPLACE PACKAGE emp_actions AS -- spec

 TYPE EmpRecTyp IS RECORD (emp_id INT, salary REAL);

 CURSOR desc_salary RETURN EmpRecTyp;

 PROCEDURE hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER);

397 | P a g e

 PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE OR REPLACE PACKAGE BODY emp_actions AS -- body

 CURSOR desc_salary RETURN EmpRecTyp IS

 SELECT empno, sal FROM emp ORDER BY sal DESC;

 PROCEDURE hire_employee (

 ename VARCHAR2,

 job VARCHAR2,

 mgr NUMBER,

 sal NUMBER,

 comm NUMBER,

 deptno NUMBER) IS

 BEGIN

 INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,

 mgr, SYSDATE, sal, comm, deptno);

 END hire_employee;

 PROCEDURE fire_employee (emp_id NUMBER) IS

 BEGIN

 DELETE FROM emp WHERE empno = emp_id;

 END fire_employee;

END emp_actions;

Package state

The values of the variables, constants, and cursors that a package declares (in either its specification or body)

comprise its package state. If a PL/SQL package declares at least one variable, constant, or cursor, then the

package is stateful; otherwise, it is stateless.

Each session that references a package item has its own instantiation of that package. If the package is stateful,

the instantiation includes its state.

 The package state persists for the life of a session, except in these situations:

• The package is SERIALLY_REUSABLE.
• The package body is recompiled.
• After PL/SQL raises the exception, a reference to the package causes Oracle Database to re-

instantiate the package, which re-initializes it.
• Any of the session's instantiated packages are invalidated and revalidated.

398 | P a g e

Lesson 21.5: Overloading in Packages

Overloading is very useful feature of packages. It allows procedure and functions to be given the same name

but have either different type of data entered as parameters or a different number of parameters defined.

Overloading Example:

In the example below we have created a package with 2 functions both with the same name. One of the

functions will return a monthly salary based on the employee id while the second function will return a

monthly salary based on the last name of the employee.

399 | P a g e

The above example shows executing an overloaded function. At execution Oracle decides which function to

use based on the parameter values provided.

400 | P a g e

Lesson 21.6: Oracle Packages

Oracle supplies many PL/SQL packages with the Oracle server to extend database functionality. You can use

the supplied packages when creating your applications.

To view a list of the Oracle supplier packages run the following

select object_name

 from dba_objects

 where owner = 'SYS'

 and object_type = 'PACKAGE';

There are over 300 packages available. Even though not all of them are intended for developers, the ones that

are for developers are very well documented in the standard Oracle documentation

Below are a few delivered package solutions

The FORMAT_CALL_STACK function within the delivered dbms_utility package returns the call stack as a character

string.

CREATE OR REPLACE PROCEDURE p1

 IS

 BEGIN

 DBMS_OUTPUT.put_line (DBMS_UTILITY.format_call_stack);

 END;

 CREATE OR REPLACE PACKAGE pkg1

 IS

 PROCEDURE p1;

 END pkg1;

CREATE OR REPLACE PACKAGE BODY pkg1

 IS

 PROCEDURE p2

 IS

 BEGIN

 P1;

 END;

 END pkg1;

CREATE OR REPLACE PROCEDURE p3

 IS

 BEGIN

 FOR indx IN 1 .. 500

 LOOP

 NULL;

 END LOOP;

 pkg1.p2;

 END;

 BEGIN

 p3;

 END;

——————— PL/SQL Call Stack ———————

 object handle line number object name

000007FF7EA83240 4 procedure HR.p1

401 | P a g e

000007FF7E9CC3B0 6 package body HR.PKG1

000007FF7EA0A3B0 9 procedure HR.p3

000007FF7EA07C00 2 anonymous block

DBMS_UTILITY.FORMAT_ERROR_STACK built-in function, like SQLERRM, returns the message associated

with the current error (the value returned by SQLCODE). The DBMS_UTILITY.FORMAT_ERROR_STACK function

differs from SQLERRM as it can return an error message as long as 1,899 characters truncation issues when

the error stack gets long. (SQLERRM truncates at only 510 characters.)

DBMS_UTILITY.FORMAT_ERROR_BACKTRACE built-in function returns a formatted string that displays a stack

of programs and line numbers tracing back to the line on which the error was originally raised.

UTL_CALL_STACK Package

The UTL_CALL_STACK package in Oracle 12c provides information about currently executing subprograms. the

execution call stack, the error stack and error backtrace data.

402 | P a g e

Lesson 21.7: WhiteLists

Most PL/SQL-based applications are made up of many packages, some of which are the “top level” API to be

used by programmers to implement user requirements and others of which are “helper” packages that are to

be used only by certain other packages. In Oracle Database 12c you can limit down to the package/procedure

or function level what bits of code may invoke other bits of code in the database. This process is called "white

listing" and can be used to implement the concept of least privileges in your database.

Prior to 12c PL/SQL could not prevent a session from using any and all subprograms in packages to which that

session’s schema had been granted EXECUTE authority This could have implications in the area of SQL

Injection.

In Oracle 12c with the white list approach, the only way to execute a given piece of code would be to run it

from a specific set of compiled units. You cannot execute a white listed unit from the top level, it must be

called by some specific set of units. This is all accomplished with the new "accessible by"

clause. The ACCESSIBLE BY clause can be added to packages, procedures, functions and types to specify which

objects are able to reference the PL/SQL object directly

CREATE OR REPLACE FUNCTION HelloWorld

(pv_message VARCHAR2) RETURN VARCHAR2

 ACCESSIBLE BY

 (FUNCTION mypkg.f1

 , PROCEDURE mypkg.p1

 , PACKAGE mypkg.api

 , TYPE mypkg.myType)

 IS

 lv_message VARCHAR2(20) := 'Hello ';

 BEGIN

lv_message := lv_message || pv_message || '!';

RETURN lv_message;

END;

White List Callers Invalidates or disallows compilation with dependencies as shown below

CREATE OR REPLACE FUNCTION CallerFn

 (pv_message VARCHAR2) RETURN VARCHAR2 IS

BEGIN

 RETURN HelloWorld (pv_message);

 END

PL/SQL: Statement ignored PLS-00904: insufficient privilege to access

object CallerFn

As the “PLS” error indicates, this issue is caught at compilation time. There is no runtime performance hit for
using this feature.

Whitelisting in Package Specification

http://docs.oracle.com/cd/E16655_01/server.121/e17906/chapter1.htm#FEATURENO10047
http://docs.oracle.com/cd/E16655_01/server.121/e17906/chapter1.htm#FEATURENO10047

403 | P a g e

Consider the following example, create a public package with one procedure

CREATE OR REPLACE PACKAGE public_pkg

IS

 PROCEDURE do_work;

END;

/

Create a package with two procedures. The package is private in the sense that it can be invoked only from
within the public package (public_pkg). The ACCESSIBLE_BY clause is added to the package specification.

CREATE OR REPLACE PACKAGE private_pkg

 ACCESSIBLE BY (public_pkg)

IS

 PROCEDURE do_this;

 PROCEDURE do_that;

END;

/

The package bodies are as follows

CREATE OR REPLACE PACKAGE BODY public_pkg

IS

 PROCEDURE do_work

 IS

 BEGIN

 private_pkg.do_this;

 private_pkg.do_that;

 END;

END;

CREATE OR REPLACE PACKAGE BODY

private_pkg

IS

 PROCEDURE do_this

 IS

 BEGIN

 DBMS_OUTPUT.put_line ('THIS');

 END;

 PROCEDURE do_that

 IS

 BEGIN

 DBMS_OUTPUT.put_line ('THAT');

 END;

END;

/

Running the public package’s proceduresn are follows run successfully

BEGIN

 public_pkg.do_work;

END;

Running the following anonymous block fails

BEGIN

404 | P a g e

 private_pkg.do_this;

END;

Consider the following procedure using "definer rights" which is the default in Oracle.

CREATE PROCEDURE DEL_EMP AS

BEGIN

 DELETE FROM EMPLOYEES;

END;

Another user who calls this procedure only needs Execute privilege for this procedure, it is not required that

such user has Delete privilege on table Employees.

Procedure runs under permission of the procedure owner or user who defined is, thus it is called "definer"

rights.

CREATE PROCEDURE DEL_EMP AS

authid current_user

BEGIN

 DELETE FROM EMPLOYEES;

END;

A user who runs this procedure successfully must have Execute privilege for this

procedure and delete privilege for table Employees.

405 | P a g e

Lesson 21.8: Invoker and Definer rights

When designing and creating PL/SQL applications, a thorough understanding of the rights models used in the

Oracle database is vital for an effective security design.

The definer rights mode: This is the default mode of operation, whereby Oracle uses the security privileges

and object resolution from the creator and thus “definer” of the procedure. This has been the traditional

model for application development over the years.

The invoker rights mode: This mode works the same as definer rights during program compilation. However,

at execution time, the database uses the privileges and object resolution of the invoker of the procedure.

 Oracle Modes for Executing Stored Procedures

 DEFINER RIGHTS INVOKER RIGHTS

 Compilation Execution Compilation Execution

Object Resolution Definer Definer Definer Invoker

Privileges Definer Definer Definer Invoker

Roles Disabled Disabled Disabled Enabled

Using definer rights, at both compilation and execution, the database will use the privilege set of, and the

objects belonging to, the definer of the procedure. An important point to note is that database roles are

disabled. When using invoker rights, at execution, the database uses the privilege set and objects belonging

to the invoker of the procedure (the schema whose privileges are currently in effect during a particular

session). Unlike definer rights, roles are enabled at execution time.

One of the most common problems experienced by PL/SQL developers is illustrated in the following example.

We want to create a function that returns the module name (or program) for the current users’ session. The

module name is obtained from joining the V$SESSION and V$PROCESS views. To ensure access to these objects,

we will build the function as the SYSTEM user (this is not a recommended approach, but it is common for people

to do this). SYSTEM has been granted the DBA role that allows access to the V$ views. The first thing we’ll do is

to create an anonymous block to test our logic. An anonymous block, unlike a definer rights program, runs

with roles enabled.

declare

l_module varchar2(48);

begin

select b.module into l_module

from v$process a, v$session b

where a.addr = b.paddr

and b.audsid = sys_context('userenv','sessionid');

dbms_output.put_line('Current Program is ' || l_module);

end;

406 | P a g e

Current Program is SQL*Plus

PL/SQL procedure successfully completed.

Place the same logic into a function:

create or replace function get_my_program

return varchar2

as

l_module varchar2(48);

begin

select b.module into l_module

from v$process a, v$session b

where a.addr = b.paddr

and b.audsid = sys_context('userenv','sessionid');

return l_module;

end;

6/3 PL/SQL: SQL Statement ignored

7/23 PL/SQL: ORA-00942: table or view does not exist

The function fails to compile because the DBA role is disabled. As such, the V$ views are not accessible inside
the (named) PL/SQL program.

407 | P a g e

Section 22: REF Cursors

Lesson 22:1 Overview of REF Cursors

In PL/SQL, a pointer has the data type REF X, where REF is short for REFERENCE and X stands for a class of

objects. A cursor variable has the REF CURSOR data type. Like a cursor, a cursor variable points to the current

row in the result set of a multirow query. However, cursors differ from cursor variables the way constants

differ from variables. A cursor is static, but a cursor variable is dynamic because it is not tied to a specific query.

You can open a cursor variable for any type-compatible query.

Using Cursor Variables

• You use cursor variables to pass query result sets between PL/SQL stored subprograms and
various clients. Neither PL/SQL nor any of its clients owns a result set; they simply share a pointer
to the query work area in which the result set is stored.

• A query work area remains accessible as long as any cursor variable points to it. Therefore, you
can pass the value of a cursor variable freely from one scope to another.

408 | P a g e

Lesson 22.2: Strong and weak cursors

A REF CURSOR is basically a data type. A variable created based on such a data type is generally called a cursor

variable. A cursor variable can be associated with different queries at run-time. The primary advantage of

using cursor variables is their capability to pass result sets between sub programs (like stored procedures,

functions, packages etc.). With the REF_CURSOR you can return a recordset/cursor from a
procedure or function.

There are 2 basic types:

Strong ref cursor

A strong ref cursor the returning columns with datatype and length need to be known at compile time.

Weak ref cursor

A weak ref cursor the structure does not need to be known at compile time.

Declaring a SYS_REFCURSOR Cursor Variable

The following is the syntax for declaring a SYS_REFCURSOR cursor variable:

name SYS_REFCURSOR;

name is an identifier assigned to the cursor variable.

The following is an example of a SYS_REFCURSOR variable declaration.

DECLARE

rc_emp SYS_REFCURSOR;

Opening a Cursor Variable

Once a cursor variable is declared, it must be opened with an associated SELECT command. The OPEN FOR

statement specifies the SELECT command to be used to create the result set.

Syntax:

OPEN name FOR query;

name is the identifier of a previously declared cursor variable. Query is a SELECT command that determines

the result set when the statement is executed. The value of the cursor variable after the OPEN FOR statement

is executed identifies the result set.

409 | P a g e

Declaring a User Defined REF CURSOR Type Variable

You must perform two distinct declaration steps in order to use a user defined REF CURSOR variable:

Create a referenced cursor TYPE

Declare the actual cursor variable based on that TYPE

The syntax for creating a user defined REF CURSOR type is as follows:

Syntax:

TYPE cursor_type_name IS REF CURSOR [RETURN return_type];

The following is an example of a cursor variable declaration.

DECLARE

 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;

 rc_emp emp_cur_type;

Closing a Cursor Variable

Unlike static cursors, a cursor variable does not have to be closed before it can be re-opened again. The result

set from the previous open will be lost. The example is completed with the addition of the CLOSE statement.

Syntax:

CLOSE cursor_name;

410 | P a g e

Lesson 22.3: Creating REF Cursors

Strongly Typed

CREATE OR REPLACEPACKAGE strongly_typed

IS

 TYPEreturn_cur

IS

 REF CURSORRETURNall_tables%ROWTYPE;

 PROCEDUREchild(p_return_rec OUT return_cur);

PROCEDURE parent(

 p_NumRecs PLS_INTEGER);

END strongly_typed;

/

PACKAGE Body

CREATE OR REPLACEPACKAGEBODY strongly_typed

IS

 PROCEDUREchild(p_return_rec OUT return_cur)

IS

BEGIN

 OPEN p_return_rec FOR SELECT * FROM all_tables;

END child;

PROCEDURE parent(

 p_NumRecs PLS_INTEGER)

IS

 p_retcur return_cur;

 at_rec all_tables%ROWTYPE;

BEGIN

 child(p_retcur);

 FOR i IN 1 .. p_NumRecs

 LOOP

 FETCH p_retcur INTO at_rec;

 dbms_output.put_line(at_rec.table_name || ' - ' ||

at_rec.tablespace_name || ' - ' || TO_CHAR(at_rec.initial_extent) || ' - '

|| TO_CHAR(at_rec.next_extent));

 ENDLOOP;

 END parent;

END strongly_typed;

411 | P a g e

To Run the Demo:

set serveroutput on

 exec strongly_typed.parent(1)

 exec strongly_typed.parent(8)

Weakly Typed

Note: A REF CURSOR that does not specify the return type such as SYS_REFCURSOR.

CREATE OR REPLACE PROCEDUREchild (p_NumRecs INPLS_INTEGER, p_return_cur

OUT SYS_REFCURSOR)

IS

BEGIN

 OPEN p_return_cur FOR 'SELECT * FROM all_tables WHERE rownum <= ' ||

p_NumRecs ;

END child;

CREATE OR REPLACEPROCEDURE parent (pNumRecs VARCHAR2)

IS

 p_retcur SYS_REFCURSOR;

 at_rec all_tables%ROWTYPE;

BEGIN

 child(pNumRecs, p_retcur);

 FOR i IN 1 .. pNumRecs

 LOOP

 FETCH p_retcur INTO at_rec;

 dbms_output.put_line(at_rec.table_name || ' - ' ||

at_rec.tablespace_name || ' - ' || TO_CHAR(at_rec.initial_extent) || ' - '

|| TO_CHAR(at_rec.next_extent));

 ENDLOOP;

 END parent;

To Run the Demo:

set serveroutput on

 exec parent(1)

 exec parent(17)

412 | P a g e

Passing Ref Cursors

CREATETABLE employees (empid NUMBER(5), empname VARCHAR2(30));

INSERTINTO employees (empid, empname) VALUES

(

 1, 'Dan Morgan'

)

;

INSERTINTO employees (empid, empname) VALUES

(

 2, 'Hans Forbrich'

)

;

INSERTINTO employees (empid, empname) VALUES

(

 3, 'Caleb Small'

)

;

COMMIT;

CREATE OR REPLACEPROCEDURE pass_ref_cur(p_cursor SYS_REFCURSOR)

IS

TYPE array_t ISTABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

rec_array array_t;

BEGIN

 FETCH p_cursor BULK COLLECT INTO rec_array;

 FOR i IN rec_array.FIRST .. rec_array.LAST

 LOOP

 dbms_output.put_line(rec_array(i));

 ENDLOOP;

 END pass_ref_cur;

 /

 SET serveroutput ON

 DECLARE

 rec_array SYS_REFCURSOR;

 BEGIN

 OPEN rec_array FOR 'SELECT empname FROM employees';

 pass_ref_cur(rec_array);

 CLOSE rec_array;

 END;

413 | P a g e

Section 23: Introduction to SQL Tuning

In this section you will cover the following topics:

• How a SQL statement is executed
• How to gather and interpret execution plans
• Different access paths
• Different join methods and join orders
• Join types
• Autotrace
• Overview of hints

414 | P a g e

Lesson 23.1: Overview of SQL Statement execution

There are two (three if it is a SELECT) steps that every SQL statement has to go through before you see the

results from the statements. All SQL statements must first of all be PARSED. Then, they can be EXECUTED any

number of times and if it is a SELECT statement, the results need to be FETCHED for each execution.

Parse

The main aim of the parse phase is to generate an execution plan. To be able to do this a number of steps

have to be followed:

1. Syntax check
This step checks if the syntax of the statement is correct.

2. Semantic check
A statement might be invalid even if the syntax is correct. One of the tables or a column referenced

may not exist or the user trying to execute the query does not have the necessary object privileges.

These checks are carried out on our behalf through something called Recursive SQL – this is SQL that

is written by the user SYS.

3. Private SQL Area
 Each session that issues an SQL statement has a private SQL area associated with this statement. The

 first step for Oracle when it executes an SQL statement is to establish a run time area (within the

private SQL area) for the statement.

4. Library Cache
If the statement is syntactically and semantically correct, it is placed into the library cache (which is

part of the Shared Pool).

5. Opening the cursor
A cursor (an area of memory) for the statement is opened. The statement is hashed and compared

with the hashed values in the library cache area. If it is already in the library cache area then a soft

parse occurs otherwise, it's a hard parse.

• Soft parse – it reuses the execution plan already in the library cache
• Hard Parse - the statement undergoes the following steps:

• View merging : If the query contains views, the query might be rewritten to join the
view's base tables instead of the views.

• Statement Transformation: Transforms complex statements into simpler ones
through sub-query unnesting or in/or transformations

• Optimization: The CBO uses statistics to minimize the cost to execute the query. The
result of the optimization is the evaluation plan. If bind variable are used in the
statement then their value is checked. The execution plan is stored in the cursor

Execute

Memory for bind variables is allocated and filled with the actual bind-values and the execution plan is

executed.

415 | P a g e

Oracle checks if the data it needs for the query are already in the buffer cache. If not, it reads the data off the

disk into the buffer cache.

If the statement is DML then the row(s) that are changed are locked. No other session will be able to change

the row whilst it is being updated. Before and after images describing the changes are written to the redo log

buffer and the rollback segments. The original block receives a pointer to the rollback segment. Then, the data

is changed.

Fetch (for SELECTs only)

The data is fetched from database blocks. Rows that don't match the predicate are removed. If needed (for

example in an order by statement), the data is sorted. The data is then returned to the application.

The Optimizer

The optimizer determines the most efficient way to execute a SQL statement after considering many factors

related to the objects referenced and the conditions specified in the query. Oracle uses cost based

optimization. You can influence the optimizer's choices by setting the optimizer mode, and by gathering

representative statistics for the CBO.

Oracle has two optimizer modes:

• ALL_ROWS: has a goal of best throughput and is aimed at batch processing or report writing
applications

• FIRST_ROWS_n: has a goal of best response time to return the first n rows (where n = 1, 10, 100,
1000). This approach is useful for user interfaces type applications.

 These modes can be set at instance, session or statement level.

Oracle also has two types of statistics that are usually gathered automatically by jobs running overnight:

• Object statistics: information on objects such as tables, indexes etc
• System statistics: information on CPU and I/O usage

These statistics are used within the optimizer to come up with the best execution plan. Statistics are gathered

via the DBMS_STATS package.

Cost, Cardinality and Selectivity

416 | P a g e

The cost represents the units of work or resource used. The query optimizer uses disk I/O, CPU usage, and

memory usage as units of work. The lower the cost the better the execution plan

The selectivity is the estimated proportion of rows in the row set that the query selects, with 0 meaning no

rows and 1 meaning all rows. Selectivity is tied to a query condition or a combination of conditions. A

condition becomes more selective as the selectivity value approaches 0 and less selective as the value

approaches 1.

 Selectivity = number of rows satisfying condition/total number of rows

The cardinality is the estimated number of rows returned by each operation in an execution plan. Cardinality

can be derived from the table statistics.

Cardinality = Total number of rows * Selectivity

For example, let us assume we have 110 rows in our EMPLOYEES table and the number of distinct values in

the JOB_ID column is 10 and in the DEPARTMENT_ID column is 20

SELECT *

FROM customers

WHERE job_id = ‘AD_PRES’;

Then the estimated selectivity => 1/10 = 0.1

and the estimated cardinality => (1/10) * 110 = 11

With the following statement

SELECT *

FROM customers

WHERE job_id IN (‘AD_PRES’, ‘HR_REP’);

Then the estimated selectivity => 2/10 = 0.2

417 | P a g e

and the estimated cardinality => (2/10) * 110 = 22

With the following statement

SELECT *

FROM customers

WHERE job_id = ‘AD_PRES’

AND department_id = 20;

 Then the estimated selectivity => (1/10) * (1/20) = 0.005

and the estimated cardinality => ((1/10) * (1/20)) * 110 = 0.55

418 | P a g e

Lesson 23.2: Execution Plans

An execution plan shows the detailed steps necessary to execute a SQL statement. These steps are

expressed as a set of database operators that consume and produce rows. The order of the operators and

their implementations is decided by the query optimizer using a combination of query transformations and

physical optimization techniques. While the display is commonly shown in a tabular format, the plan is in

fact tree-shaped.

Displaying the Execution plan

The two most common methods used to display the execution plan of a SQL statement are:

1. EXPLAIN PLAN command
2. V$SQL_PLAN

Using the EXPLAIN PLAN command and the DBMS_XPLAN.DISPLAY function

The EXPLAIN PLAN command calculates the execution plan for a SQL statement without actually executing

the statement – the theoretical plan - and outputs its result into a table called PLAN_TABLE. PLAN_TABLE is

automatically created as a global temporary table and is visible to all users.

Syntax: EXPLAIN PLAN

FOR

SELECT…;

SELECT *

FROM TABLE(DBMS_XPLAN.DISPLAY());

SELECT *

FROM TABLE(DBMS_XPLAN.DISPLAY(null,null,'ALL'));

SQL Example:

EXPLAIN PLAN

FOR

SELECT e.last_name, d.department_name

FROM employees e, departments d

WHERE e.department_id = d.department_id

AND e.department_id = 123;

SELECT *

FROM TABLE(DBMS_XPLAN.DISPLAY());

419 | P a g e

SELECT *

FROM TABLE(DBMS_XPLAN.DISPLAY(null,null,'ALL'));

420 | P a g e

Using V$SQL_PLAN and the DBMS_XPLAN.DISPLAY_CURSOR function

V$SQL_PLAN provides a way of examining the execution plan for cursors that are still in the library cache.

V$SQL_PLAN is a dynamic performance view that has a similar structure to PLAN_TABLE. To query

V$SQLPLAN you need to know the SQL_ID for the statement you are interested in.

You can get the SQL_ID from V$SQL e.g.

SELECT sql_id

FROM v$sql

WHERE sql_text LIKE '%AND e.department_id = 123';

This can then be entered into the DBMS_XPLAN.DISPLAY_CURSOR to obtain the actual execution plan as

follows:

SELECT *

FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR('6908rf7mh26mv'));

Using the hint GATHER_PLAN_STATISTICS along with the DBMS_XPLAN.DISPLAY_CURSOR function with the

ALLSTATS format option you can see how the optimizer’s estimates compare with what really happens. By

comparing the A-Rows column (actual rows) with the E-Rows column (estimated rows) you should be able to

tell where the optimizer is having problems. Where there is a big difference then there is a potential problem.

Unfortunately it is not quite as straightforward as that as the A-Rows are cumulative while the E-Rows are not.

So you will have to multiply the E-Row by Starts (or divide A-Rows by the number of executions) in order to

compare like with like.

SELECT /*+ GATHER_PLAN_STATISTICS */ EMPLOYEE_ID, last_name,department_id

FROM employees

WHERE department_id= 10;

SELECT plan_table_output

FROM table(DBMS_XPLAN.DISPLAY_CURSOR (FORMAT=>'ALLSTATS LAST'));

421 | P a g e

422 | P a g e

Understanding the execution plan

Execution plan output is a tabular representation of a set of row sources. Each step (line in the execution plan)

represents a row source. DBMS_XPLAN utility indents nodes to indicate that they are the children of the parent

above it. The order of the nodes under the parent indicates the order of execution of the nodes within that

level. SQL execution plans are interpreted using a pre-order traversal (reverse transversal) algorithm. That is:

1. Look for the inner-most indented statement. That is usually the first statement executed but NOT

always!

2. In most cases, if there are two statements at the same level, the first statement is executed first.

Execution plans are read inside-out.

Execution Plan Example – 1

SELECT *

FROM emp

WHERE empno = 7839;

0 SELECT STATEMENT ()

1 0 TABLE ACCESS BY INDEX ROWID EMP

2 1 INDEX UNIQUE SCAN EMP_EMPNO_PK

The order of operations is 2,1

Execution Plan Example – 2

SELECT e.ename,d.dname

FROM emp e, dept d

WHERE e.deptno = d.deptno;

0 SELECT STATEMENT ()

1 0 HASH JOIN

2 1 TABLE ACCESS FULL DEPT

3 1 TABLE ACCESS FULL EMP

The order of operations is 2,3,1

Execution Plan Example – 3

SELECT e.ename,d.dname

FROM emp e, dept d

WHERE e.deptno = d.deptno

423 | P a g e

AND e.empno = 7839;

0 SELECT STATEMENT ()

1 0 NESTED LOOPS

2 1 TABLE ACCESS BY INDEX ROWID EMP

3 2 INDEX UNIQUE SCAN EMP_EMPNO_PK

4 1 TABLE ACCESS BY INDEX ROWID DEPT

5 2 INDEX UNIQUE SCAN DEPT_DEPTNO_PK

The order of operations is 3,5,2,4,1

Execution Plan Example – 4

SELECT e.ename,d.dname,c.bonus_amount

FROM emp e, dept d, bonus c

WHERE e.deptno = d.deptno

AND e.empno = c.empno;

0 SELECT STATEMENT

1 0 TABLE ACCESS BY INDEX ROWID EMP

2 1 NESTED LOOPS

3 2 MERGE JOIN CARTESIAN

4 3 TABLE ACCESS FULL DEPT

5 3 BUFFER SORT

6 5 TABLE ACCESS FULL BONUS

7 2 INDEX RANGE SCAN EMP_EMPNO_PK

The order of operations is 4,6,5,3,7,2,1

Execution Plan Example – 5

 0 SELECT STATEMENT

 1 0 UNION-ALL

 2 1 SORT (GROUP BY)

 3 2 FILTER

 4 3 HASH JOIN

 5 4 INDEX FAST FULL SCAN IDX1

 6 4 INDEX RANGE SCAN IDX2

 7 1 SORT (GROUP BY)

 8 7 FILTER

 9 8 NESTED LOOPS

 10 9 HASH JOIN

424 | P a g e

 11 10 INDEX FAST FULL SCAN IDX3

 12 10 INDEX FAST FULL SCAN IDX1

 13 9 INDEX RANGE SCAN IDX2

The order of operations is 5, 6, 4, 3, 2, 11, 12, 10, 13, 9, 8, 7, 1

In order to determine if you are looking at a good execution plan or not, you need to understand how the

Optimizer determined the plan in the first place. You should also be able to look at the execution plan and

assess if the Optimizer has made any mistake in its estimations or calculations, leading to a suboptimal plan.

The components to assess are:

• Cardinality– Estimate of the number of rows coming out of each of the operations.
• Access method – The way in which the data is being accessed, via either a table scan or index access.
• Join method – The method (e.g., hash, sort-merge, etc.) used to join tables with each other.
• Join type – The type of join (e.g., outer, anti, semi, etc.).
• Join order – The order in which the tables are joined to each other.

425 | P a g e

Lesson 23.3: Access Paths

The access method - or access path - shows how the data will be accessed from each table (or index). The

access method is shown in the operation field of the explain plan.

Oracle supports a number of common access methods:

1. Full table scan - Reads all rows from a table and filters out those that do not meet the where clause
predicates. A full table scan will use multi block IO (typically 1MB IOs). A full table scan is selected if a large
portion of the rows in the table must be accessed, no indexes exist or the ones present cannot be used or
if the cost is the lowest.

2. Table access by ROWID - Oracle first obtains the ROWIDs either from a WHERE clause predicate or through
an index scan of one or more of the table's indexes. Oracle then locates each selected row in the table
based on its ROWID and does a row-by-row access.

3. Index unique scan – Only one row will be returned from the scan of a unique index. It will be used when
there is an equality predicate on a unique (B-tree) index or an index created as a result of a primary key
constraint.

4. Index range scan – Oracle accesses adjacent index entries and then uses the ROWID values in the index to
retrieve the corresponding rows from the table. An index range scan can be bounded or unbounded. It
will be used when a statement has an equality predicate on a non-unique index key, or a non-equality or
range predicate on a unique index key. (=, <, >, LIKE). Data is returned in the ascending order of index
columns.

5. Index range scan descending – Conceptually the same access as an index range scan, but it is used when
an ORDER BY .. DESC clause can be satisfied by an index.

6. Index skip scan - Normally, in order for an index to be used, the leading column of the index would be
referenced in the query. However, if all the other columns in the index are referenced in the statement
except the first column, Oracle can do an index skip scan, to skip the first column of the index and use
the rest of it. This can be advantageous if there are few distinct values in the leading column of a
concatenated index and many distinct values in the non-leading key of the index.

7. Full Index scan - A full index scan does not read every block in the index structure, contrary to what its
name suggests. An index full scan processes all of the leaf blocks of an index, but only enough of the branch
blocks to find the first leaf block. It is used when all of the columns necessary to satisfy the statement are
in the index and it is cheaper than scanning the table. It uses single block IOs. It may be used in any of the
following situations:

• An ORDER BY clause has all of the index columns in it and the order is the same as in the index
(can also contain a subset of the columns in the index).

• The query requires a sort merge join and all of the columns referenced in the query are in the
index.

426 | P a g e

• Order of the columns referenced in the query matches the order of the leading index columns.
• A GROUP BY clause is present in the query, and the columns in the GROUP BY clause are present

in the index.

8. Fast full index scan - This is an alternative to a full table scan when the index contains all the columns that
are needed for the query, and at least one column in the index key has the NOT NULL constraint. It cannot
be used to eliminate a sort operation, because the data access does not follow the index key. It will also
read all of the blocks in the index using multi-block reads, unlike a full index scan.

9. Index join – This is a join of several indexes on the same table that collectively contain all of the columns
that are referenced in the query from that table. If an index join is used, then no table access is needed,
because all the relevant column values can be retrieved from the joined indexes. An index join cannot be
used to eliminate a sort operation.

427 | P a g e

Lesson 23.4: Join methods

The join method describes how data from two data producing operators will be joined together. You can

identify the join methods used in a SQL statement by looking in the operations column in the execution plan.

Nested Loops Joins

These joins are useful when small subsets of data are being joined and if there is an efficient way of accessing

the second table (for example an index look up). For every row in the first table (the outer table), Oracle

accesses all the rows in the second table (the inner table). Consider it like two embedded FOR loops. In Oracle

Database 11g the internal implementation for nested loop joins changed to reduce overall latency for physical

I/O so it is possible you will see two NESTED LOOPS joins in the operations column of the plan, where you

previously only saw one on earlier versions of Oracle.

Sort Merge Joins

Sort merge joins are useful when the join condition between two tables is an inequality condition such as, <,

<=, >, or >=. Sort merge joins can perform better than nested loop joins for large data sets. The join consists

of two steps:

1. Sort join operation: Both the inputs are sorted on the join key.

2. Merge join operation: The sorted lists are merged together.

A sort merge join is more likely to be chosen if there is an index on one of the tables that will eliminate one of

the sorts.

Hash Joins

Hash joins are used for joining large data sets. The optimizer uses the smaller of the two tables or data sources

to build a hash table, based on the join key, in memory. It then scans the larger table and performs the same

hashing algorithm on the join column(s). It then probes the previously built hash table for each value and if

they match, it returns a row.

Cartesian Join

With a Cartesian join the optimizer joins every row from one data source with every row from the other data

source, creating a Cartesian product of the two sets. Typically, this is only chosen if the tables involved are

small or if one or more of the tables does not have a join conditions to any other table in the statement.

428 | P a g e

 Lesson 23.5: Join Types

Oracle offers several join types: inner join, (left) outer join, full outer join, anti join, semi join, etc. As an inner

join is the most common type of join, the execution plan does not specify the key word “INNER’. For all other

types of joins specific keywords are used.

Outer Join - An outer join returns all rows that satisfy the join condition and also all of the rows from the table

without the (+) for which no rows from the other table satisfy the join condition.

Anti Join - An anti-join between two tables returns rows from the first table where no matches are found in

the second table. An anti-join is essentially the opposite of a semi-join. While a semi-join returns one copy of

each row in the first table for which at least one match is found, an anti-join returns one copy of each row in

the first table for which no match is found. Anti-joins are written using the NOT EXISTS or NOT IN syntax.

Semi Join – A semi-join between two tables returns the rows from the first table where one or more matches

are found in the second table. The difference between a semi-join and a conventional join is that rows in the

first table will be returned at most once. Even if the second table contains two matches for a row in the first

table, only one copy of the row will be returned. Semi-joins are written using the EXISTS or IN syntax.

429 | P a g e

Lesson 23.6: Join Order

The join order is the order in which the tables are joined together in a multi-table SQL statement. To determine

the join order in an execution plan, look at the indentation of the tables in the operation column.

In a more complex SQL statement, it may not be so easy to determine the join order by looking at the

indentations of the tables in the operations column. In these cases, it might be easier to use the FORMAT

parameter in the DBMS_XPLAN procedures to display the outline information for the plan, which will contain

the join order.

430 | P a g e

Lesson 23.7: Autotrace

Autotrace is a SQLPlus command although a simplified version of it is available in SQL Developer. It allows you

to see execution plans and also some statistics for a statement. To be able to run AUTOTRACE you need to be

granted the PLUSTRACE role.

Autotrace has a number of options that can be set:

SET AUTOTRACE ON – Enables all options.

SET AUTOTRACE ON EXPLAIN – Displays returned rows and the explain plan.

SET AUTOTRACE ON STATISTICS – Displays returned rows and statistics.

SET AUTOTRACE TRACE EXPLAIN – Displays the execution plan for a select statement without actually

executing it.

SET AUTOTRACE TRACEONLY – Displays execution plan and statistics without displaying the returned rows.

This option should be used when a large result set is expected.

SQL Example:

SET AUTOTRACE TRACEONLY

SELECT last_name

FROM employees

WHERE employee_id = 123;

Explanation: In the example you can see we have used the AUTOTRACE TRACEONLY so we only

see the execution plan and the statistics – we do not see all the data from the query.

431 | P a g e

The execution plan is similar in structure to those we have seen previously however

the statistics are new. Here is a description of what they all mean.

Name Description

recursive calls Number of recursive calls generated at both the user and

system level. Oracle maintains tables used for internal

processing. When Oracle needs to make a change to these

tables, it internally generates an internal SQL statement, which

in turn generates a recursive call.

db block gets Number of times a CURRENT block was requested.

consistent gets Number of times a consistent read was requested for a block.

physical reads Total number of data blocks read from disk. This number equals

the value of "physical reads direct" plus all reads into buffer

cache.

redo size Total amount of redo generated in bytes.

bytes sent via

SQL*Net to

client

Total number of bytes sent to the client from the foreground

processes.

bytes received

via SQL*Net

from client

Total number of bytes received from the client over Oracle Net.

SQL*Net

roundtrips

to/from client

Total number of Oracle Net messages sent to and received from

the client.

sorts

(memory)

Number of sort operations that were performed completely in

memory and did not require any disk writes.

sorts (disk) Number of sort operations that required at least one disk write.

rows

processed

Number of rows processed during the operation.

If you add the db block gets and the consistent gets together that will give you the

number of blocks read to satisfy the statement – so 2 in our example.

432 | P a g e

The number of physical reads will depend on what is currently in the Database

Buffer Cache – in our example it is 0 as the data had already been requested earlier.

Code file: Code23_7.sql

433 | P a g e

Lesson 23.8: Overview of Hints

A hint is an instruction to the optimizer. There are hints for most of the operations you will see in an execution

plan. There are hints that cover the following and more:

• Optimizer mode
• Query transformation
• Access path
• Join orders
• Join methods

When writing SQL, you may know information about the data unknown to the optimizer. Hints enable you to

make decisions normally made by the optimizer, sometimes causing the optimizer to select a plan that it sees

as higher cost.

In a development environment, hints are useful for testing the performance of a specific access path. However

in the database and host environment can make hints obsolete or have negative consequences. So in 99% of

cases hints should be avoided. With good statistics, you usually never need to include them in your

statements.

Syntax: [MERGE|INSERT|UPDATE|DELETE|SELECT] /*+ hint(s) */

or

[MERGE|INSERT|UPDATE|DELETE|SELECT] --+ hint(s)

SQL Example:

SELECT /*+ INDEX (e emp_idx) */ EMPLOYEE_ID,last_name

FROM employees e

WHERE employee_id = 123;

Explanation: In the example we are specifying the INDEX hint – the first parameter is the table

alias and the second parameter relates to the name of the index. So we are asking

the optimizer to create an execution plan that uses the EMP_IDX from the

EMPLOYEES table

When including hints, you must code them immediately after the first SQL keyword ie MERGE, INSERT,

UPDATE, DELETE or SELECT of the statement block. Each statement block can have only one hint comment,

but that can contain multiple hints. Hints apply to only the statement block in which they appear – so if a hint

appeared in a sub-query it would only affect the sub-query and not the outer query. It is important to

remember that if your statement uses table aliases then your hints must reference the aliases rather than the

table names. If your hint is incorrect then the optimizer will ignore it without raising errors.

http://docs.oracle.com/cd/E11882_01/server.112/e41573/glossary.htm#BGBHDFAC

434 | P a g e

Here are some common hints:

Optimization Modes:

ALL_ROWS

FIRST_ROWS(n)

Access Path Hints

FULL(table)

INDEX(table index)

NO_INDEX

INDEX_ASC (table index)

INDEX_DESC (table index)

INDEX_COMBINE (table index)

INDEX_JOIN (table index)

INDEX_FFS (table index)

INDEX_SS (table index)

INDEX_SS_ASC (table index)

INDEX_SS_DESC (table index)

NO_INDEX_FFS (table index)

NO_INDEX_SS (table index)

Join Operation

USE_HASH (table)

NO_USE_HASH (table)

USE_MERGE (table)

NO_USE_MERGE (table)

USE_NL (table)

USE_NL_WITH_INDEX (table)

435 | P a g e

NO_USE_NL (table)

Join Order

ORDERED

LEADING (table)

Other

APPEND

NOAPPEND

CACHE

NOCACHE

CARDINALITY

CURSOR_SHARING_EXACT

DRIVING_SITE

DYNAMIC_SAMPLING

436 | P a g e

Section 24: Unit Testing

Lesson 24:1 What is Unit Testing

Unit testing refers to the practice of testing certain functions and areas – or units – of our code. This gives us

the ability to verify that our functions work as expected. That is to say that for any function and given a set of

inputs, we can determine if the function is returning the proper values and will gracefully handle failures

during the course of execution should invalid input be provided.

A second advantage to approaching development from a unit testing perspective is that you'll likely be writing

code that is easy to test. Since unit testing requires that your code be easily testable, it means that your code

must support this particular type of evaluation. As such, you're more likely to have a higher number of smaller,

more focused functions that provide a single operation on a set of data rather than large functions performing

a number of different operations.

A third advantage for writing solid unit tests and well-tested code is that you can prevent future changes from

breaking functionality. Since you're testing your code as you introduce your functionality, you're going to begin

developing a suite of test cases that can be run each time you work on your logic. When a failure happens,

you know that you have something to address.

As PL/SQL developers, you should see unit tests as part of the development cycle, part of the set of deliverables.

Write your unit tests while writing the PL/SQL code and store the tests with the program units. You should be

abbe able to run and rerun tests at any point to verify the code still works as required and desired.

Why unit test

Suppose you want to ensure that a block of PL/SQL code is working properly, but don’t want to take the time

to write a unit test. Wrap the code in DBMS_OUTPUT statements that display or print the results of

intermediate and final computations and the results of complex conditional steps and branches. This will

enable you to see the computations and the results of complex conditional steps and branches. The following

example demonstrates this tactic for placing comments into strategic locations within a PL/SQL code block in

order to help determine if code is functioning as expected.

Syntax: Function syntax

SQL Example:

CREATE OR REPLACE FUNCTION factorial (fact INTEGER) RETURN

INTEGER is

BEGIN

IF fact < 0 THEN

 DBMS_OUTPUT.Put_LINE('Value is < 0');

 RETURN NULL;

437 | P a g e

ELSIF fact = 0 THEN

 DBMS_OUTPUT.Put_LINE('Value is = 0');

 RETURN 1;

ELSIF fact = 1 THEN

 DBMS_OUTPUT.Put_LINE('Value is = 1');

 RETURN fact;

ELSE

 DBMS_OUTPUT.Put_LINE('Value is >=1');

 RETURN fact * factorial (fact-1);

END IF;

END factorial;

DECLARE

 v_Val NUMBER;

BEGIN

 SELECT FACTORIAL(0) INTO v_Val FROM dual;

END;

Query Results: The value =0

Explanation: The following example demonstrates this tactic for placing comments into strategic

locations within a PL/SQL code block in order to help determine if code is

functioning as expected.

Code file: Code24_1_1.sql

The use of DBMS_OUTPUT statements within PL/SQL code for displaying data or information pertaining to

the functionality of the code has been a great tactic for testing code in any language. In order to use

DBMS_OUTPUT statements for testing your code, you must place them in strategic locations. In the example,

comments have been placed within each of the IF-ELSE blocks to display a bit of text that will tell the

developer how the values are being processed within the function. Although using DBMS_OUTPUT

statements in code can be very useful for determining where code is functioning properly, it can cause clutter,

and can also create its own issues as DBMS_OUTPUT is removed before code is released into production. This

can take some time, which could be better spent on development. As a means for testing small units of code,

using DBMS_OUTPUT statements works quite well. However, if you wish to develop entire test suites and

automate it better to develop entire test suites and automated unit using a testing tool.

438 | P a g e

Lesson 24:2 Tools for building Unit Tests

There are a limited number of tools on the market for writing PL/SQL unit tests; as a result, many users have

written their own testing mechanisms.

utPLSQL

utPLSQL is an open source PL/SQL testing framework for building unit tests. You install utPLSQL by running a

script that installs all necessary tables, packages, procedures, and other objects required for the tests. You

create and build all your tests in SQL*Plus or from the command line, so there is no tool or additional client

required. utPLSQL is hosted on Sourceforge, http://utplsql.sourceforge.net, and has a wide variety of

resources, documentation, and examples on how to install the software, build tests, and make good use of

the framework. The utPLSQL unit-testing framework can alleviate some of the pain of unit testing. The

framework is easy to use and performs nicely for testing code. We will focus on utPLSQL on this course.

Quest Code Tester for Oracle

Quest Code Tester for Oracle is a commercial product for defining and running tests. You can build tests for

single programs or packages, and you can build individual tests or suites. The great advantage you gain by

using a product like this is that you can build tests and then rerun them whenever needed, thus supporting

the argument that you need to build up a full regression suite of tests for your project.

Oracle SQL Developer

Oracle SQL Developer is a free product that supports PL/SQL unit testing. Oracle SQL Developer unit testing

was first introduced in SQL Developer 2.0 and already provides much of what the other tools on the market

offer; supported by an Oracle Repository, it allows users to build and save tests.

439 | P a g e

Installation of utPL/SQL

First, download the utPLSQL sources from http://utplsql.sourceforge.net/. Once you have obtained the

sources, use the following steps to install the utPLSQL package into the database for which you wish to write

unit tests, and make it available for all schemas. Create a user to host the utPLSQL tables, packages, and other

objects. In this example, the user will be named UTP, and the default permanent and temporary tablespaces

will be used.

create user utp identified by abc123;

Grant privileges to the newly created UTP user using the GRANT privilege_name TO user_name statement,

replacing values with the appropriate privilege and username. The user will require the following privileges:

• Create session
• Create procedure
• Create table
• Create view
• Create sequence
• Create public synonym
• Drop public synonym

Install the objects by running the ut_i_do.sql script. Once these steps have been completed then you will have

the ability to run unit tests on packages that are loaded into different schemas within the database.

Before you can begin to write and run unit tests within the utPLSQL framework for the PL/SQL contained

within your database, you must install the utPLSQL package into a database schema. While the utPLSQL

framework can be loaded into the SYSTEM schema, it is better to separate the framework into its own schema

by creating a separate user and installing the packages, tables, and other objects into it

440 | P a g e

Once you have created a user schema in which to install the utPLSQL framework objects, you must grant it

the appropriate privileges. The majority of the privileges are used to create the objects that are required to

make the framework functional. Public synonyms are created for many of the framework objects, and this

allows them to be accessible to other database user accounts. After all privileges have been granted, running

the ut_i_do.sql script and passing the install parameter will complete the installation of the framework. After

completion, you can begin to build unit test packages and install them into different schemas within the

database, depending on which PL/SQL objects that you wish to test.

Note

Unit tests will be executed from the same schema in which the PL/SQL object that is being tested resides, not

from the schema that contains the utPLSQL framework objects.

441 | P a g e

Lesson 23:3 Building Unit Tests

Structure of Unit Test

A test package consists of two separate files,

a package header

a package body

Create a header for the test package and save it in a file with the same name you have given the header and

with a .pks suffix. A header file contains three procedures:

ut_setup,

ut_teardown,

and the procedure that performs the unit tests of the target object in your database.

The package must also contain an implementation for your unit test procedures. The unit test procedure

names should begin with the ut_ prefix followed by the name of the PL/SQL object that you are testing.

For example, suppose you want to create a unit test package to test the code for the factorial function. This

package header should be stored into a file named ut_factorial.pks and loaded into the database whose

objects you are testing.

442 | P a g e

Syntax: CREATE OR REPLACE PACKAGE….

SQL Example:

CREATE OR REPLACE PACKAGE ut_ factorial

IS

PROCEDURE ut_setup;

PROCEDURE ut_teardown;

PROCEDURE ut_ factorial;

END ut_calc_quarter_hour;

CREATE OR REPLACE PACKAGE BODY ut_factorial

IS

 PROCEDURE ut_setup

 IS

 BEGIN

 NULL;

 END;

 PROCEDURE ut_teardown

 IS

 BEGIN

 NULL;

 END;

 PROCEDURE ut_factorial

 IS

 BEGIN

 -- Perform unit tests here

 NULL;

 END ut_factorial;

END ut_factorial;

Query Results:

Explanation: This package header should be stored into a file named ut_ factorial.pks and loaded

into the database whose objects you are testing.Create the package body that

implements the procedures specified by the unit test package header and save it as

a file with the same name as the header, but this time with a .pkb suffix. The

following package body should be stored into a file named factorial.pkb and loaded

into the database. The package body in this example conforms to the format that

must be used for testing packages using the utPLSQL framework.

Code file: Code24_1_2.sql

443 | P a g e

Note: The .pks and .pkb suffixes could be changed to something different, like .sql, if you wish. You could also

store both the package header and body in the same file. However, utPLSQL framework will look for the .pks

and .pkb suffixes in order to automatically recompile your test packages before each test. It is best to follow

the utPLSQL convention to ensure that your test packages are always valid.

Writing a unit test

You have a PL/SQL object that you’d like to test to verify it returns the expected values. Create a utPLSQL test

package to test every code branch and computation within your function. Use utPLSQL assertion statements

to test every foreseeable use case for the function. For example, suppose you wish to test a simple factorial

function that contains four code branches, each of which returns a value. Here’s the target function:

Step 1 Target function or procedure

CREATE OR REPLACE FUNCTION factorial(

 fact INTEGER)

 RETURN INTEGER

IS

BEGIN

 IF fact < 0 THEN

 RETURN NULL;

 ELSIF fact = 0 THEN

 RETURN 1;

 ELSIF fact = 1 THEN

 RETURN fact;

 ELSE

 RETURN fact * factorial (fact-1);

 END IF;

END factorial;

444 | P a g e

Step 2 Create unit test package

Next, create the unit test package to test the factorial function. Name the package using the same name as

the function to be tested and adding the prefix ut_ to it In this example, you’ll name the package ut_factorial.

Create the three required procedures within the package for setup, teardown, and testing. Remember to save

the file as a PKS file (i.e., one with a .pks file extension).

CREATE OR REPLACE PACKAGE ut_factorial

IS

 PROCEDURE ut_setup;

 PROCEDURE ut_teardown;

 PROCEDURE ut_factorial;

END ut_factorial;

Step 3 Create unit test package body

Create the unit testing package body. No code is required for the ut_setup or the ut_teardown procedures as

these are usually reserved for code that updates the database prior to or after running the tests. For example,

the setup procedure may insert records that are required only by the unit test, which means that the teardown

routine must clean up any data the test leaves behind. The ut_factorial procedure is built with a series of

assert statements that test each code branch in the factorial function.

CREATE OR REPLACE PACKAGE BODY ut_factorial

IS

 PROCEDURE ut_setup

 IS

 BEGIN

 NULL;

 END ut_setup;

 PROCEDURE ut_teardown

 IS

 BEGIN

 NULL;

 END ut_teardown;

 PROCEDURE ut_factorial

 IS

 BEGIN

 utAssert.isnull ('is NULL test', factorial(-1));

 utAssert.eqQuery ('0! Test', 'select factorial(0) from dual', 'select 1

from dual');

 utAssert.eqQuery ('1! Test', 'select factorial(1) from dual', 'select 1

from dual');

 utAssert.eqQuery ('N! Test', 'select FACTORIAL(5) from dual', 'select

120 from dual');

 END ut_factorial;

445 | P a g e

END ut_factorial;

The utPLSQL package contains a number of tests that can be used to ensure that your code is working properly.

Each of these tests is an assertion, which is a statement that evaluates to either true or false depending on

whether its conditions are met. The solution to this recipe uses four tests to determine whether the function

returns an appropriate result for each scenario. The utAssert.isnull procedure verifies the second parameter

returns a null value when executed. The utAssert.eqQuery procedure uses the select statements in parameter

positions two and three to determine if the unit test succeeds or fails. Each select statement must return the

same value when executed to succeed. The three calls to utAssert.eqQuery procedure in the ut_factorial

procedure tests one branch (if statement) within the factorial function. The expected return value from the

factorial is used in the select statement of the third parameter to retrieve the value from dual. If the factorial

is updated in such a way that any code branch no longer returns the expected value, the unit test will fail. This

test should be performed after modifying the factorial function to test for bugs introduced by the update.

Lesson 23:4 Startup and Teardown Processes

How It Works

A unit test package for the utPLSQL framework consists of a package header and a body. The package header

declares a setup procedure, a teardown procedure, and a unit testing procedure. The package body consists

of the PL/SQL code that implements the unit test. When you create a ut_PLSQL package, its name must be

prefixed with ut_, followed by the procedure or function name for which you are writing the unit test. The unit

test prefix can be changed, but ut_ is the default.

The test package body must contain both a setup and teardown procedure. These procedures must also be

given names that use the same prefix you have chosen for your unit testing. The package header declares

ut_setup and ut_teardown procedures. The ut_setup procedure is to initialize the variables or data structures

the unit test procedure uses. When a unit test is executed, ut_setup is always the first procedure to execute.

The ut_teardown procedure is used to clean up after all of the tests have been run. You should use this

procedure to destroy all of the data structures and variables created to support your unit tests. The

ut_teardown procedure is always executed last, after all unit tests have been run.

For example, the ut_setup could add a record to the database and the teardown would roll it back

PROCEDURE ut_setup

 AS

 BEGIN

INSERT

INTO EMPLOYEES

 (EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_DATE,JOB_ID,

SALARY,COMMISSION_PCT,MANAGER_ID,DEPARTMENT_ID)

VALUES(199,'Bob','Joine','bob@mail.ie','012 45896',

'25-Feb-2014','IT_PROG',20000,.3,100,90);

446 | P a g e

END;

 PROCEDURE ut_teardown

 AS

 BEGIN

 rollback;

 END;

447 | P a g e

Lesson 23:5 Assertion Tests

The table below lists the different assertion tests that are part of the utAssert package.

Assertion Name Description

utAssert.eq Checks equality of scalar values

utAssert.eq_refc_query Checks equality of RefCursor and Query

utAssert.eq_refc_table Checks equality of RefCursor and Database Tables

utAssert.eqcoll Checks equality of collections

utAssert.eqcollapi Checks equality of collections

utAssert.eqfile Checks equality of files

utAssert.eqoutput Checks equality of DBMS_OUTPUT values

utAssert.eqpipe Checks equality of database pipes

utAssert.eqquery Checks equality of different queries

utAssert.eqqueryvalue Checks equality of query against a value

utAssert.eqtabcount Checks equality of table counts

utAssert.eqtable Checks equality of different database tables

UTASSERT.isnotnull Checks for NOT NULL values

utAssert.isnull Checks for NULL values

utAssert.objexists Checks for the existence of database objects

utAssert.objnotexists Checks for the existence of database objects

utAssert.previous_failed Checks if the previous assertion failed

utAssert.previous_passed Checks if the previous assertion passed

utAssert.this Generic “this” procedure

utAssert.throws Checks if a procedure or function throws an exception

448 | P a g e

Lesson 24:6 Running Test

With a unit test package defined, you want to run it to verify that a function returns the values you expect

under a variety of scenarios.

Use the utPLSQL.test procedure to run your test package. For example, suppose you want to run the unit test

you built for factorial

Begin

 utPLSQL.test('factorial', recompile_in => FALSE);

end

The utPLSQL framework makes it easy to execute all of the tests that you have setup within a unit test package;

you need only to enter a utPLSQL.test command. The call to theutPLSQL.test procedure passes two

parameters, the first is the name of the unit test to run. Notice thatyou do not specify the name of the package

built for the unit test. Instead, you pass the name of the function being tested. The second parameter tells the

utPLSQL.test procedure not to recompile any of the code before running the test.

449 | P a g e

Lesson 24:7 Test driven development

Test Driven Development (TDD) is a software engineering methodology that states that all code should have

a set of clear, repeatable unit tests written for it. Furthermore, it states that these tests should be written

before the corresponding code is written, thus driving the development of the code base. The ultimate goal

of TDD is to produce code that meets the exact need expressed by the test and providing for a safety net in

the event that the code base needs to be modified later. TDD is one aspect of a much larger development

methodology known as Agile Development.

Unit Testing refers to what you are testing, TDD to when you are testing.

Unit Testing means, well, testing individual units of behavior. An individual unit of behavior is the smallest

possible unit of behavior that can be individually tested in isolation. You can write unit tests before you write

your code, after you write your code or while you write your code. TDD means letting your tests drive your

development (and your design). You can do that with unit tests, functional tests and acceptance tests. The

most important part of TDD is the middle D. You let the tests drive you. The tests tell you what to do, what to

do next, when you are done.

450 | P a g e

Writing a Test Driven Development procedure or function – example 1

For this example, write a function that shows the commission each employee in the company made last

year.

SELECT first_name, Last_name, Salary, COMMISSION_PCT

FROM employees;

FIRST_NAME LAST_NAME SALARY COMMISSION_PCT

Trenna Rajs 3500

Curtis Davies 3100

Randall Matos 2600

Peter Vargas 2500

John Russell 14000 0.4

Karen Partners 13500 0.3

Alberto Errazuriz 12000 0.3

…

451 | P a g e

Step 1: Write test that does not pass.

CREATE OR REPLACE PACKAGE BODY ut_TEST_calc_comm AS

PROCEDURE ut_calc_comm IS

-- we write our test logic in the package body

BEGIN

 -- our call to assert equals is taking 3 parameters.

 -- The first is the value we expect, the second is the actual value-

--(our function result)

 -- the third is the optional error message to supply if the test

fails.

 utAssert.eqQuery(400, calc_comm(1000, .4), 'Commission is wrong');

END;

 PROCEDURE ut_setup

 AS

 BEGIN

 return;

 END;

 PROCEDURE ut_teardown

 AS

 BEGIN

 return;

 END;

END;

Step 2: Write the target function that fails the test

CREATE OR REPLACE FUNCTION calc_comm(p_salary IN number, p_comm IN number)

RETURN number IS

BEGIN

 RETURN 0;

END;

Step 3: Write the target function that passes the test

Now our task is to make the test pass. Switch back to the function and write the code to calculate percentage

correctly:

CREATE OR REPLACE FUNCTION calc_comm(p_salary IN number, p_comm IN number)

RETURN number IS

452 | P a g e

BEGIN

 RETURN p_comm * p_salary;

END;

Step 4: Repeat the process for all test cases

CREATE OR REPLACE PACKAGE ut_TEST_calc_comm

IS

 -- unit tests are public procedures that have no parameters

 PROCEDURE ut_setup;

 PROCEDURE ut_teardown;

 PROCEDURE ut_calc_comm;

 PROCEDURE t_zero_salary;

 PROCEDURE t_zero_comm;

 PROCEDURE t_zero_both;

END ;

CREATE OR REPLACE PACKAGE BODY ut_TEST_calc_comm AS

PROCEDURE ut_calc_comm IS

-- we write our test logic in the package body

BEGIN utAssert.eqQuery(400, calc_comm(1000, .4), 'Commission is wrong');

END;

 PROCEDURE ut_setup

 AS

 BEGIN

INSERT

INTO EMPLOYEES

 (

 EMPLOYEE_ID,

 FIRST_NAME,

 LAST_NAME,

 EMAIL,

 PHONE_NUMBER,

 HIRE_DATE,

 JOB_ID,

 SALARY,

 COMMISSION_PCT,

 MANAGER_ID,

 DEPARTMENT_ID

)

 VALUES

 (

453 | P a g e

 199,

 'Bob',

 'Joine',

 'bob@mail.ie',

 '012 45896',

 '25-Feb-2014',

 'IT_PROG',

 20000,

 .3,

 100,

 90

);

END;

 PROCEDURE ut_teardown

 AS

 BEGIN

 rollback;

 END;

PROCEDURE t_zero_salary IS

BEGIN

 utAssert.eqQuery(1, calc_comm(0, .1), 'Commission is wrong');

END;

PROCEDURE t_zero_comm IS

BEGIN

 -- with no commission, the amount should be zero

 utAssert.eqQuery(0, calc_comm(1000, 0), 'Commission percent is wrong');

END;

PROCEDURE t_zero_both IS

BEGIN

 -- with no commission and no salary, the amount should be zero

 utAssert.eqQuery(0, calc_comm(0, 0), 'Commission percent is wrong');

END;

END;

CREATE OR REPLACE FUNCTION calc_comm(

 p_salary IN NUMBER,

 p_comm IN NUMBER)

 RETURN NUMBER

IS

BEGIN

454 | P a g e

 IF p_comm = 0 THEN

 RETURN 0;

 ELSE

 RETURN p_comm*p_salary;

 END IF;

END;

Writing a Test-Driven Development procedure or function –example 2

For this example, write a function that checks whether a password is considered strong according to the

following five criteria:

 contains at least one-digit character (0-9)

 contains at least one lowercase character (a-z)

 contains at least one uppercase character (A-Z)

 contains at least one special character (@#$%)

 length between 6 and 20 characters

Step 1 – Write the test cases

Define what are valid parameters values and invalid parameters for example the ValidatePassword function

to return true if ‘ABCdef123#’ is passed as a parameter. Passing Abcdef# to the the ValidatePassword function

should return FALSE. The more cases you define, the higher the reliability will be of your unit test.

Syntax: CREATE OR REPLACE PACKAGE….

SQL Example:

create or replace

package ut_UserLogin as

 procedure ut_setup;

 procedure ut_teardown;

 procedure ut_ValidatePassword;

end ut_UserLogin;

create or replace

package body ut_UserLogin as

 procedure ut_setup as

 begin

455 | P a g e

 null;

 end ut_setup;

 procedure ut_teardown as

 begin

 null;

 end ut_teardown;

 procedure ut_ValidatePassword as

 begin

 utassert.eq(

 msg_in => 'ABCdef123# is a strong password',

 check_this_in =>

UserLogin.ValidatePassword('ABCdef123#'),

 against_this_in => true

);

 utassert.eq(

 msg_in => '%a1B2CD is a strong password',

 check_this_in =>

UserLogin.ValidatePassword('%a1B2CD'),

 against_this_in => true

);

 utassert.eq(

 msg_in => 'Abcde1@ is a strong password',

 check_this_in =>

UserLogin.ValidatePassword('Abcde1@'),

 against_this_in => true

);

 utassert.eq(

 msg_in => 'Abcdef# misses a digit

character',

 check_this_in =>

UserLogin.ValidatePassword('Abcdef#'),

 against_this_in => false

);

 utassert.eq(

 msg_in => 'ABCD1234$ misses a lowercase

character',

 check_this_in =>

UserLogin.ValidatePassword('ABCD1234$'),

 against_this_in => false

);

 utassert.eq(

 msg_in => 'abcd1234@ misses an uppercase

character',

456 | P a g e

 check_this_in =>

UserLogin.ValidatePassword('abcd1234@'),

 against_this_in => false

);

 utassert.eq(

 msg_in => 'ABcd1234 misses a special

character',

 check_this_in =>

UserLogin.ValidatePassword('ABcd1234'),

 against_this_in => false

);

 utassert.eq(

 msg_in => 'Abc1% is too short',

 check_this_in =>

UserLogin.ValidatePassword('Abc1%'),

 against_this_in => false

);

 utassert.eq(

 msg_in => 'Abcdefghijk123456789@ is too

long',

 check_this_in =>

UserLogin.ValidatePassword('Abcdefghijk123456789@'),

 against_this_in => false

);

 utassert.eq(

 msg_in => 'An empty string should return

false',

 check_this_in => UserLogin.ValidatePassword(''),

 against_this_in => false

);

 end ut_ValidatePassword;

end ut_UserLogin;

Query Results:

Explanation: Place unit test code in a separate test package. The name of the test package equals

the name of the package to be tested, prefixed with ut_. By following this naming

convention, it is possible for utPLSQL to automatically recompile your package

before each test.

A test package must contain a ut_setup and ut_teardown procedure. These two

procedures offer the possibility to respectively initialize and remove temporary

database objects that are available to use in your unit test procedures.

457 | P a g e

Code file: Code24_7_1.sql

Step 2 – Create the function

Syntax: CREATE OR REPLACE PACKAGE….

SQL Example:

create or replace

package body UserLogin as

 function ValidatePassword(in_password in varchar2)

 return boolean is

 begin

 if not regexp_like(in_password, '[[:digit:]]') then

 return false;

 end if;

 if not regexp_like(in_password, '[[:lower:]]') then

 return false;

 end if;

 if not regexp_like(in_password, '[[:upper:]]') then

 return false;

 end if;

 if not regexp_like(in_password, '[@#$%]') then

 return false;

 end if;

 if length(in_password) not between 6 and 20 then

 return false;

 end if;

 return true;

 end ValidatePassword;

end UserLogin;

Query Results:

458 | P a g e

Explanation: The function uses RegEx to verify the strength of the parameter

 contains at least one digit character (0-9)

 contains at least one lowercase character (a-z)

 contains at least one uppercase character (A-Z)

 contains at least one special character (@#$%)

 length between 6 and 20 characters

Code file: Code24_7_2.sql

Step 3 – run the unit test

Run the unit tests for UserLogin package by invoking the utplsql.test procedure:

set serveroutput on;

begin

utplsql.test(

package_in => 'UserLogin',

recompile_in => false

);

end;

459 | P a g e

Appendix

HR SCHEMA

Human Resources (HR) Schema for This Course

The Human Resources (HR) schema is part of the Oracle Sample Schemas that can be installed in an Oracle

database. The practice sessions in this course use data from the HR schema.

Table Description

REGIONS Contains rows that represent a region such as the Americas or Asia.

COUNTRIES Contains rows for countries, each of which is associated with a region.

LOCATIONS Contains the specific address of a specific office, warehouse, or production site of a

company in a particular country.

DEPARTMENTS Shows details about the departments in which employees work. Each department may

have a relationship representing the department manager in the EMPLOYEES table.

EMPLOYEES Contains details about each employee working for a department. Some employees may

not be assigned to any department.

JOBS Contains the job types that can be held by each employee.

JOB_HISTORY Contains the job history of the employees. If an employee changes department within

a job or changes jobs within a department, a new row is inserted into this table with

the old job information of the employee.

