
https://thinkst.com/ts

Q2 2022

ThinkstScapes
Quarterly

Most companies find out way too late
that they've been breached.

Thinkst Canary changes this.

Canaries deploy in under 4 minutes
and require 0 ongoing admin overhead.

They remain silent until they need to chirp,
and then, you receive that single alert.

When.it.matters.

Find out why some of the smartest security teams
in the world swear by Thinkst Canary.

https://canary.love

Brought to you by

 A bird’s eye view of Hout Bay, South Africa. Photo by Carolinie Cavalli on Unsplash.

Q2 20222

https://canary.love

Introduction 4

Themes covered in this issue 5

Security of networks – modern and legacy 6
I am become loadbalancer, owner of your network 7
Evil Never Sleeps: When Wireless Malware Stays On After Turning Off iPhones 8
AirTag of the Clones: Shenanigans with Liberated Item Finders 9
Are Blockchains Decentralised? 10

Languages and their ecosystems 11
What Log4j teaches us about the Software Supply Chain 12
Kani Rust Verifier 13
Cross-Language Attacks 14
Software Updates Strategies: A Quantitative Evaluation Against Advanced Persistent Threats 15

Deep dives into deep places 16
AMD Secure Processor for Confidential Computing Security Review 17
Living Off the Walled Garden: Abusing the Features of the Early Launch Antimalware
Ecosystem

18

A Kernel Hacker Meets Fuchsia OS 19

Nifty sundries 20
Adaptive Multi-objective Optimization in Gray-box Fuzzing 21
Cooper Knows the Shortest Stave: Finding 134 Bugs in the Binding Code of Scripting
Languages with Cooperative Mutation

22

Bypassing CSP with dangling iframes 23
Bypassing Dangling Markup Injection Mitigation Bypass in Chrome 23
Pre-hijacked accounts: An Empirical Study of Security Failures
in User Account Creation on the Web

24

Conclusion 25

Contents

Q2 20223

Introduction
Welcome to the Q2 2022
edition of ThinkstScapes!
This issue focuses on
content released, published,
or presented since the
publication of the Q1 2022
quarterly release.

Conference/venue name
Number of
publications
reviewed

NDSS Symposium 83

Black Hat Asia 34

LangSec SPW 11

RSA Conference USA 389

CanSecWest 18

REcon 23

High Confidence Software and Systems
Conference

33

Hardwear.io USA 16

TyphoonCon 16

IEEE Workshop on Offensive Technologies 11

Kernelcon 36

TROOPERS 34

BSides Knoxville 14

Total 718

It’s worth noting that even with
conferences rescheduled to this
quarter from the last, a larger share
of featured content was originally
released in the form of blog posts. This
may be due to researchers delaying
their publication until one of the three
Las Vegas conferences (Black Hat USA,
DEF CON, or BSidesLV); regardless,
high-quality blog posts and technical
reports covered content in almost every
selected theme.

As a reminder: We would appreciate
your help in catching any interesting
work that may have fallen through the
cracks – any papers, presentations, or
blog posts are welcome. Please send
them to ts@thinkst.com!

As always, Thinkst Labs is happy to notify you when we release a
new issue. Sign up on the ThinkstScapes homepage where you
can also find a link to the audio summary of this issue.

This issue includes talks drawn from the following

conferences (and 150 security blogs):

 Kloof Corner, Cape Town, South Africa. Photo by Tim Johnson on Unsplash.

Q2 20224

mailto:ts%40thinkst.com?subject=
https://thinkst.com/ts

Themes covered
in this issue
 SECURITY OF NETWORKS –
 MODERN AND LEGACY

 DEEP DIVES INTO DEEP PLACES

 LANGUAGES AND
 THEIR ECOSYSTEMS

 NIFTY SUNDRIES

Networks have traditionally been a field
focused primarily on the optimisation
and betterment of existing technologies.
It is interesting to see multiple works
covering network security from different
perspectives; both supposedly-invisible
portions of the legacy network stack, and
completely novel networks that have
emerged relatively recently. This theme
explores attacking load balancers that
terminate encryption, the network and
devices that interact with Apple’s new
Find My feature, and a look at the Bitcoin
network from a variety of perspectives.

Work in this theme is centred around low-
level portions of a system, from a CPU
component to kernel security. In addition
to highlighting security issues, the process
by which each of the researchers learned
about and instrumented their respective
targets is educational for others tackling
novel environments. From an extensive
review of AMD’s security hardware, to
Microsoft’s anti-malware privilege level
and a Linux kernel researcher exploring
another OS, work in this theme provides
more than just a list of fixed security
vulnerabilities.

New languages that are designed with
security as a first-class feature are gaining
popularity in products large and small.
Along with the language itself, new
languages are bundling build systems
and dependency management into the
core toolchain. This theme looks at novel
work both in how those languages and
ecosystems can improve security – and
instances where they add attack surface.

As always, there are some papers that do
not fit precisely into any emergent theme
for the issue, but still warrant inclusion.
This quarter includes work on applying
multi-objective optimization on fuzzing,
finding vulnerabilities in document parsers,
some interesting interactions with parsing
HTML, and finally a new type of account
hijacking that is made possible by services
adding SSO integrations.

Q2 20225

6666

 The sun sets over Nature Valley in South Africa. Photo by redcharlie on Unsplash.

Security of
networks –
modern and
legacy

I am become loadbalancer, owner of your network

Evil Never Sleeps: When Wireless Malware Stays On
After Turning Off iPhones

AirTag of the Clones: Shenanigans with Liberated
Item Finders

Are Blockchains Decentralised?

Q2 20226

I am become loadbalancer,
owner of your network
Author: Nate Warfield

Slides

Figure 1: A diagram of the
software components on an
F5 BIG-IP device.

TAKEAWAYS:
	 Load balancers are supposed to be unnoticeable in a network

path, yet this work shows they are a ripe target with significant impact.
By design they must act as a parser for untrusted user input, and are
positioned in a place of privilege in the stack. Unlike switches that have
well-defined rules for routing IP traffic, load balancers must run custom
logic and therefore expose more attack surface. Carefully consider
every component in the path between an attacker and their target –
more than just the endpoint may be in scope.

This work looks at both a recent exploit for F5 BIG-IP load balancers (that
allow an unauthenticated attacker remote code execution on the device)
and a primer for how to avoid detection during post-exploitation. These load
balancers usually are used to terminate SSL/TLS, so they can see or modify
all traffic unencrypted. While the management is supposed to be entirely
out-of-band, a number of serious vulnerabilities over the last few years has
highlighted weaknesses on the user-facing traffic plane.

The most recent vulnerability presented (from May 2022) fits into a single
tweet, but once code execution is acquired, next steps are more complicated
due to F5’s remote logging and synchronisation of configuration – if an
attacker makes the wrong change, it will be replicated across the network
and could cause a massive impact, alerting defenders quickly. Finally, the
researcher highlights how F5’s own knowledge base offers a procedure for
gaining persistence by marking a script as a startup service.

7

https://github.com/n0x08/ConferenceTalks/blob/master/BecomeLoadbalancer_TR22.pdf

Evil Never Sleeps: When Wireless Malware
Stays On After Turning Off iPhones
Authors: Jiska Classen,
Alexander Heinrich,
Robert Reith, and
Matthias Hollick

Building on past work exploring Bluetooth firmware and embedded wireless
stacks featured in the Q3 2021 ThinkstScapes edition, this paper explores
modern iPhones’ low-power mode (LPM). LPM is a mode of operation
entered either when an iPhone is turned off by the user, or when the
battery is insufficient to keep iOS running. To support the Find My Location
feature, as well as some payment or access cards/keys, LPM keeps the ultra-
wideband, NFC and Bluetooth radios active.

While the firmware for both the NFC and UWB radios are signed, the
Bluetooth module allows the device to patch its firmware with only CRC
integrity checks. On a jailbroken iPhone, the host control interface allows for
the main application processor to send updated code values to the radio.
Exploring the functionality provided in LPM and how it is implemented via
the wireless interfaces provides some possible attacks on changing the
Find My behaviour, e.g., to allow an attacker to track a device turned off by
its owner. Additionally, a few limitations are highlighted based on the pre-
cached Find My advertisements that cannot be regenerated until after iOS
has booted and the user authenticated.

Figure 2: A high-
level schematic of the
components on modern
iPhones that remain on for
multiple hours after a user-
or low power-prompted
shutdown of the device.

TAKEAWAYS:
	 While this specific attack will have little real world impact, the

work highlights the complexity of modern devices, and how our notions
of on and off must evolve alongside the technology’s interpretation.
A software update can drastically change the behaviour of the device.
Most of the security and privacy concerns in this work were specific to
opaque messaging, but seeing how devices can change with an OTA
update shows the flexibility of these new platforms.

Paper

Slides

Q2 20228

https://s3.eu-west-1.amazonaws.com/www.thinkst.com/thinkstscapes/ThinkstScapes-2021-Q3-b.pdf
https://arxiv.org/pdf/2205.06114.pdf
https://cfp.recon.cx/media/2022/submissions/CWVB8J/resources/2022-06-05_lpm_hbukXAo.pdf

AirTag of the Clones: Shenanigans with
Liberated Item Finders

TAKEAWAYS:
	 While the impact to end-users of this work is limited, the tools

provided allow others to explore this new network. Outside of fixed
cellular and WiFi installations, few wireless networks have offered
the coverage and functionality of the Find My network. Exploring how
these ad hoc networks interact with other devices and society will offer
interesting outcomes.

Apple AirTags are low-cost trackers that make use of a powerful ad hoc
network (the Find My network) to locate the tags around the world, even
in areas out of range of conventional wireless networks. As most Apple
hardware devices are automatically enlisted to act as a part of the network,
and Apple devices are commonplace, the Find My network may be one of
the largest wireless networks outside of traditional cellular or WiFi.

While there has been past research on how AirTags may be used for stalking
or other malicious purposes, this work explored the hardware itself, reverse
engineering and building open-source tooling to assist in exploration of how
the devices operate and interact with other nodes in the Find My network.
Beginning with a low-cost power glitching attack, the researchers were
able to gain access to the firmware of both the device and the device’s new
ultra-wideband radio that allows for fine-grained location reporting. Then
the researchers were able to change some of the behaviour of the device
including serial number, audio alerts, etc. Additionally they demonstrated
the ability (see Figure) to downgrade the firmware, or desynchronize the
firmware versions between the device and the UWB radio controller.

Figure 3: A high-level
transition diagram of
how the Apple Airtags
process firmware updates–
this research shows that
downgrades or mismatched
versions are possible.

Authors: Thomas Roth,
Fabian Freyer, Matthias
Hollick, and Jiska Classen

Paper

Code

Q2 20229

https://github.com/seemoo-lab/airtag/blob/main/woot22-paper.pdf
https://github.com/seemoo-lab/airtag/

Are Blockchains Decentralised?
Authors: Evan Sultanik,
Alexander Remie, Felipe
Manzano, Trent Brunson,
Sam Moelius, Eric Kilmer,
Mike Myers, Talley Amir,
and Sonya Schriner

TAKEAWAYS:
	 Breaking down the technical, social, and incentive-based models of

any system allows for better analysis of the claims of centralisation. This
work reminds us that despite the (almost) accurate claims of needing
51% of the computational power to subvert the Bitcoin network, you
only need to subvert one of the four developers’ accounts, or two of the
four major mining pools.

	 Ken Thompson’s “Reflections on Trusting Trust” is especially relevant
to the cryptocurrency space: cryptocurrencies require trusting a large
number of individuals who may not have the same incentives to act in a
manner that benefits the end user. This paper highlights that the group
is more diverse than initially thought, including Tor nodes, developers of
shared dependencies and closed-source mining frameworks.

There has been extensive research into the cryptographic promises made
by the technology underlying cryptocurrencies; this work looks at the oft-
repeated claims of decentralisation. Breaking down (de)centralisation
into multiple aspects: authoritative, consensus, motivational, topological,
network and software centrality, each is examined to understand the risks to
the blockchain by a small number of malicious entities.

Excluding the cryptographic protocols, there were a number of issues
that could be (or have been) used to subvert the network, from an entity
gaining control of Tor exit nodes (which route a majority of Bitcoin traffic)
to modify or drop blockchain traffic, to malicious transactions exploiting
differences in versions of the software across the network to create forks.
While some issues can be addressed, such as the version disparity of
nodes, others require new research to eliminate (e.g., Sybil cost to ensure
decentralisation).

Many of the issues highlighted are accompanied by a real-world example of
these attacks occurring, or statistical deviations observed in the blockchain
that indicates non-standard or private interconnections between supposedly
independent nodes. The results indicate that a majority of individuals
running nodes with the aim of strengthening the security of the network
contribute nothing to its overall security, and private or undocumented
functionality plays a key role in the networks veracity.

Figure 4: A chart ([sic]
the title) showing how

introducing network delays
in the Bitcoin network

can increase chances of a
fork, and thereby reduce

computational power
needed to claim a majority

in the network.

Paper

Audio

Blog

Q2 202210

https://www.trailofbits.com/reports/Unintended_Centralities_in_Distributed_Ledgers.pdf
https://trailofbits.audio/episodes/immutable
https://blog.trailofbits.com/2022/06/21/are-blockchains-decentralized/

Languages
and their
ecosystems

What Log4j teaches us about the Software Supply Chain

Kani Rust Verifier

Cross-Language Attacks

Software Updates Strategies: A Quantitative Evaluation
Against Advanced Persistent Threats

 Elephant grazing in Phalaborwa, South Africa. Photo by Geran de Klerk on Unsplash.

11

Video

Slides

What Log4j teaches us about the Software
Supply Chain
Author: Stephen Magill This keynote explored the response to the Log4Shell exploit released late

in 2021 from the perspective of the Maven Central repository’s owners.
The exploit targeted a vulnerability in Log4j, a popular dependency in many
Java-based applications (while ~70k applications directly depend on Log4j,
~175k transitively depend on it – in one application, there are 30 levels of
dependencies separating the application from Log4j).

The Log4j incident was complicated by an incomplete initial patch; although
the projects that were early to update were quick to adapt to changing
versions, the long tail of projects that never updated persisted indefinitely.
Finally the author presented a cautionary tale of modern software supply-
chain attacks where versions of dependencies were either corrupted or
typo-squatted. Automated build and dependency systems still leave some
thorny challenges left to solve.

Figure 5: A chart showing
downloads from Maven

central of vulnerable and
patched versions of Log4j

after the release of the
Log4Shell exploit.

TAKEAWAYS:
	 The data presents the best view possible of the response to the

Log4j vulnerability – projects that used automatic build systems to
manage dependencies. Even with this skewed data, for a vulnerability
that was in the mainstream news, a significant percentage of
downloads continue to be for vulnerable versions. For less amplified
weaknesses, the percentage of updated projects is much lower.

	 A software bill of materials (SBOM) only provides the most basic
information that could indicate a vulnerability’s applicability. SBOMs
can over-approximate applicability by conflating inclusion with use, or
use in a manner that allows exploitation, resulting in overwhelming
responders to a new bug. Unless the context of use is exposed, it is
impossible to know if the 35% of projects still consuming vulnerable
versions are in fact vulnerable, or perhaps are not logging any user-
provided data.

	 Automatically tracking the most recent versions can offer easier
protection against zero-days, but must be coupled with robust testing
and validation that the new version still works as expected, and does
not come with any other “bonus” functionalities such as a DoS or
credential exfiltration.

Q2 202212

https://www.youtube.com/watch?v=NqGcxqNLm5E
https://cps-vo.org/file/83859/download/246502

Video

Slides

Kani Rust Verifier
This work explores formal verification of a number of security-relevant
properties in unsafe Rust blocks. In traditional Rust development, there is a
large drop-off in safety for all code developed inside of an unsafe block that
can propagate back into the safe/type-checked code. Kani works to even
out that drop-off by using formal verification to guarantee the absence
of certain weaknesses in unsafe code. By converting the Rust source into
an intermediate representation ingestible by the CBMC model checker,
multiple classes of bugs and additional semantic checks can be verified.

The open-source checker has been integrated into the developer workflow
within AWS and follows a proven methodology to gain adoption: allowing
developers to write specifications and checks in the language they develop
in, embed those specifications into the code, and run the proofs as part
of the CI/CD pipeline. Future development will add to the five classes
of errors automatically checked and two types of developer-specified
properties, providing closer parity to safe Rust when unsafe code is used in
a predictable manner.

Authors: Daniel Schwartz-
Narbonne and Zyad
Hassan

Code

Figure 6: A diagram of the
core component of Kani,

the compiler from Rust
to CMBC’s goto-program

intermediate representation.

TAKEAWAYS:
	 Many unsuccessful attempts have been made over the years to

harness the benefits of low-level code while offering (more) safety
from traditional corruption attacks. Rust appears to have crossed that
chasm, with adoption into the Linux Kernel and demonstrated everyday
usage by tech powerhouses. It’s clearly no longer a “toy-language” and
should be worth considering for upcoming (suitable) projects.

	 While there are known security properties associated with the type-
checked “safe” Rust, unsafe Rust offers no such protections and even a
small amount of unsafe code can introduce vulnerabilities into a largely
safe codebase. Tools like Kani offer the ability to retain the safety of
checked Rust with the flexibility offered by unsafe Rust – even with the
listed conditions that Kani is unable to verify.

	 The workflow with which Kani is designed to integrate should help
increase its utilisation by targeting developers instead of a second
verification team that inspects code after-the-fact. That AWS is able to
get formal proofs for a portion of their C/C++ codebases is a testament
to the ease of use and integration into the development lifecycle.

Q2 202213

https://www.youtube.com/watch?v=5zg9We2n9Hs
https://cps-vo.org/file/83874/download/242266
https://github.com/model-checking/kani

Cross-Language Attacks
Authors: Samuel
Mergendahl, Nathan
Burow, and Hamed
Okhravi

Rust and Go are modern languages that can offer significant security
improvements at compile and run-time over legacy C/C++ codebases. A
common strategy is for legacy codebases to be slowly replaced by software
written in a newer and safer language, especially functionality that handles
untrusted user input. If the input is sanitised in an environment with
language and run-time checks on safety, the overall codebase’s attack
surface can be reduced.

This work looks at the security properties promised by both run-time
protections on legacy code (e.g., ASLR, CFI, and DEP) and those built into
more modern languages (focusing primarily on Rust). As seen in the figure,
due to differences in those properties, a multi-language code-base can
be more vulnerable to memory corruption attacks than a single-language
application with best-practice mitigations in place. The majority of the
attacks detailed stem from the ability of C/C++ code to change Rust’s
memory state: Rust code can then be circumvented to run arbitrary code as
Rust does not have CFI. The CFI-protected C/C++ code is used to mutate the
state of the Rust language environment, but the actual exploit is triggered
within Rust as there are fewer run-time protections due to the more
stringent compile-time guarantees – guarantees broken in a multi-language
environment.

Paper

Figure 7: An overview of
exploiting a hybrid C and

Rust program.

TAKEAWAYS:
	 The common consensus is that gradually porting a codebase to, or

adding new components in a safer language is guaranteed to reduce
attack surface. This work highlights that there are disparities in the
security properties between the improvements made to protect legacy
code and the built-in safety guarantees in safer languages that can
open new vulnerabilities.

	 While this work does in fact highlight that some safety guarantees
offered by some programming languages can be violated, the overall
burden on an attacker is likely increased over continuing to develop in
legacy languages.

Q2 202214

https://www.ndss-symposium.org/wp-content/uploads/2022-78-paper.pdf

Software Updates Strategies:
A Quantitative Evaluation Against Advanced
Persistent Threats

This paper takes a detailed look at a dataset of APT attacks from 2008 to
2020. The authors build a database of APT campaigns and then present a
methodology to analyse the attack vectors, vulnerabilities, and software
exploited by 86 different APTs in more than 350 campaigns over 12 years.
The database is publicly available on Github. The prioritisation of software
updates proves to be a key factor to reduce the impact of these intrusions.

This is the first look at a public dataset to correlate APT campaigns,
techniques used, CVEs, and vulnerable products. The authors observe
that preventative measures, like rapid deployment of software updates
(and their dependencies) can substantially reduce the probability of being
compromised by an APT using public exploits for known vulnerabilities. The
diagram below from the paper details the overlap of known and unknown
vulnerabilities used in attacks. There is a clear trend towards known,
exploitable vectors – thus the authors present a conclusion that improved
patch management will help organisations, even against APTs.

Authors: Giorgio Di Tizio,
Michele Armellini, and
Fabio Massacci

Paper

Data

Figure 8: A classification of
APT Campaigns, the majority

of campaigns exploited at
least one vulnerability in a
known-known attack (after

publication by NVD and
after reservation by MITRE).

TAKEAWAYS:
	 The long-standing approach of delaying patches may need to be

challenged in the face of data showing APT campaigns are leveraging
these vulnerabilities to gain access to organisations. Security and IT
teams may need to switch to faster patching models to keep in front of
these known attacks. Additionally, we hope to see this set extended and
built upon, as well as seek more contributions of public data on attacks
to inform our software patching decisions.

15

https://arxiv.org/pdf/2205.07759.pdf
https://github.com/giorgioditizio/APTs-database/tree/v1.0.0

AMD Secure Processor for Confidential Computing Security Review

Living Off the Walled Garden: Abusing the Features of the Early
Launch Antimalware Ecosystem

A Kernel Hacker Meets Fuchsia OS

Deep dives into
deep places

 Dolphins playing in the surf in Knysna, South Africa. Photo by redcharlie on Unsplash.

Q2 202216

AMD Secure Processor for Confidential
Computing Security Review

Following last quarter’s theme on Confidential Computing, this work
by Google and AMD provides a deep security review of AMD’s security
components (both hardware and firmware). The goal of AMD’s SEV-SNP
technology is to allow end-users to create virtual machines that the host (i.e.,
cloud provider) has no access to – the end user only trusts the AMD CPU
and associated firmware. This work takes a deep look at the security of the
trusted components and finds numerous vulnerabilities (which have been
fixed). While the researchers had access to the source code underlying this
system, they explain in their report all the ways they were able to review the
security without immediately using source access.

Many of the discovered vulnerabilities only impact the AMD platform,
but the methodologies for their discovery are generic enough to apply
to other black-box systems and cryptography code. Highlighting how to
use Wycheproof and PCIe Screamer to interact with the cryptographic
functionality and filtering on the PCI bus, respectively, the experimental
setup is well-documented for others to apply the same techniques to other
platforms. The researchers detail their approach for exploring this system,
and despite the issues discovered, remark an overall high security posture.

Authors: Cfir Cohen, James
Forshaw, Jann Horn, and
Mark Brand

Blog

Paper

Figure 9: A classification of
APT Campaigns, the majority

of campaigns exploited at
least one vulnerability in a
known-known attack (after

publication by NVD and after
reservation by MITRE).

TAKEAWAYS:
	 While few entities are able to get the level of access to a CPU

vendor’s source code, this report shines light on both the white-box
and black-box approaches of performing an in-depth security analysis
of a CPU component. This report will help researchers explore other
platforms even without the privileged access afforded to Google.

	 This report highlights the complexity in both modern processors as
well as the confidential computing primitives that are the trust anchors
for end users. Even these well-tested and competently developed
systems can have issues. Opening their system to trusted third party
review should help build trust in platforms built upon their confidential
computing primitives.

	 It is generally accepted that “rolling your own crypto” is a recipe for
disaster; this report shows that even well-designed implementations
of accepted cryptographic protocols can have subtle weaknesses that
could result in total failure. These testing methodologies can be used
to vet other implementations that are deployed widely to verify their
adherence to properly handling edge-cases.

Q2 202217

https://cloud.google.com/blog/products/identity-security/google-amd-partner-to-build-a-more-secure-future-with-confidential-computing
https://cloud.google.com/blog/products/identity-security/google-amd-partner-to-build-a-more-secure-future-with-confidential-computing

Slides

Living Off the Walled Garden: Abusing
the Features of the Early Launch
Antimalware Ecosystem
Author: Matt Graebar This work explores the protected execution environment in Microsoft’s

Windows that is used by anti-malware processes to prevent manipulation
even by administrators. Processes protected in this manner cannot be
stopped or debugged – in other words, this is a perfect runtime environment
for a malicious process to persist. The researcher explored the protections
in place (very restrictive organisational agreements with Microsoft) resulting
in a certificate chain to sign processes that run in the protected mode.

By searching for drivers or processes that were signed by certificates in this
chain on VirusTotal, the researcher was able to find a combination of an
overly-permissive driver that could be subverted, and a Microsoft-signed
application (MSBuild) that could be started in this protected mode. In order
to persist arbitrary code, the signed application cannot be used to spawn a
separate process, so the code is added as a MSBuild test property, allowing
arbitrary code to be run in MSBuild’s process space, while being protected
by the OS. Once executed in this protected space, the arbitrary code
was then able to evict or stop other processes in this environment – e.g.,
terminating the Windows Defender runtime.

Figure 10: A slide outlining
the procedure to abuse a

weak ELAM driver certificate
chain to get code execution in
Microsoft’s protected process

space.

TAKEAWAYS:
	 The castle-style model of the hardened and highly protected

execution environments can have serious ramifications when
compromised. Like past examples (e.g., kernel, hypervisor, or SMM
root-kits, etc.) the Early Launch Antimalware Ecosystem offers a
compelling target to attackers who want to deeply control a system and
prevent other defensive processes from snooping on them. The tug-of-
war between locked down positions of privilege and open computing
systems is shown here clearly – allowing end users to change the
trusted certificates would go a long way towards preventing abuse.

	 VirusTotal has shown itself to be a source of information for all
types of users, from defenders querying a file discovered in their
environment, to malware authors testing their evasion, to attackers
looking for signed binaries to subvert. Much like Shodan, VirusTotal has
become a staple for users of all types and familiarity with its capabilities
can offer multiple rewards.

Q2 202218

https://cfp.recon.cx/media/2022/submissions/MNTFHS/resources/Living-Off-the-Walled-Garden_Abusing-the-Features-of-t_dpLG8LN.pdf

Video

A Kernel Hacker Meets Fuchsia OS
In this blog post, the author, a Linux kernel contributor and security
researcher, explores the microkernel-based Fuchsia operating system
developed by Google. Despite the microkernel and capabilities architecture,
vulnerabilities were discovered that allowed for code execution in kernel
space. Due to the limited functionality provided by the kernel the post-
exploitation steps had to explore new persistence options.

The author lays out their approach to building, debugging, and fuzzing the
OS, which loads components via URIs that are automatically updated from
a repository. In the limited time dedicated to this work, the author was
unable to get a kernel fuzzer to operate, instead looking at how to exploit a
UAF in the kernel. Along the way, they discover issues with KASLR and some
of the capability checking logic – small, fixed issues, but reminders that a
microkernel does not inherently mean guaranteed security.

Authors: Alexander Popov

Blog

Figure 11: A diagram
showing the restricted subset

of functionality in kernel
space compared to a more

monolithic operating system.

TAKEAWAYS:
	 While the specific weaknesses identified in this post have little real-

world impact due to the limited deployment of Fuchsia, the approach
and discovered similarities between traditional OS kernels provide
insights into the security of microkernels. The post-exploitation steps
are especially insightful due to the reduction in kernel functionality and
introduce readers to novel persistence techniques.

Despite the microkernel and capabilities architecture,
vulnerabilities were discovered that allowed for code
execution in kernel space.

Q2 202219

https://www.youtube.com/watch?v=JPg-VHuKQIQ
https://a13xp0p0v.github.io/2022/05/24/pwn-fuchsia.html

Adaptive Multi-objective Optimization in Gray-box Fuzzing

Cooper Knows the Shortest Stave: Finding 134 Bugs in the
Binding Code of Scripting Languages with Cooperative Mutation

Bypassing CSP with dangling iframes

Bypassing Dangling Markup Injection Mitigation Bypass in
Chrome

Pre-hijacked accounts: An Empirical Study of Security Failures
in User Account Creation on the Web

 A lion in Kruger National Park, South Africa. Photo by Vincent van Zalinge on Unsplash.

Nifty sundries

Q2 202220

Adaptive Multi-objective Optimization in
Gray-box Fuzzing

This work looked at the incentives driving mutation in fuzzers, and explored
applying the mathematical principles of multi-objective optimisation
to fuzzing. One of the most popular models in current use is coverage-
guided fuzzing, popularised by the AFL toolsuite. The researchers
explored different, sometimes competing objectives in fuzzing (e.g., power
consumption, testcase runtime, coverage, etc.) and modelled it as a variant
of the multi-armed bandit problem.

By bringing together the deep theory from optimisation of this style of
game (exploring different options with unknown payoffs and costs) with
vulnerability research tools, the authors’ fuzzer was able to fairly consistently
outperform existing state-of-the-art fuzzers both in terms of power
consumption and bugs discovered. Using a benchmark of real programs
with real bugs left in, their tool found more bugs than the competition,
which included AFL++, SYMCC, and honggfuzz.

Authors: Gen Zhang,
Pengfei Wang, Tai Yue,
Xiangdong Kong, Shan
Huang, Xu Zhou, and Kai Lu

Paper

Figure 12: A diagram showing
the process for test-case

generation and mutation.

TAKEAWAYS:
	 As vulnerability research techniques become more mainstream

and treated as a suitable topic for academic study, there will be more
rigorous application of computer science theory to optimise “hacker”
tools. As this link between industry and academia strengthens, expect
to see improvements from this collaboration.

Q2 202221

https://www.ndss-symposium.org/wp-content/uploads/2022-314-paper.pdf

Slides

Cooper Knows the Shortest Stave: Finding
134 Bugs in the Binding Code of Scripting
Languages with Cooperative Mutation
Authors: Xu Peng, Yanhao
Wang, Hong Hu, and
Purui Su

This work explored the scripting execution engines embedded into various
document formats (specifically PDF and Microsoft Word for this work) to
add dynamism to rendered content. Rather than exploring the scripting
engines in isolation, the researchers used an input corpus to try to identify
correlations between data objects in the document format and the scripting
functionality that interacted with those objects. The result was an impressive
134 new bugs across real-world programs (Adobe Reader, Foxit Reader,
and Microsoft Word) that may never have been discovered by single-sided
exploration.

By combining mutation to objects and related scripted operations, the tool
was able to surface bugs where the conditions in either the data structure
or code was insufficient to trigger, but in concert were easily detected. As
an example, an object with no properties being accessed by the scripting
environment creates a use-after-free in the JavaScript engine. The tooling
has been released as open-source, and is extensible to other programming
languages and related document formats.

Paper

Code

Figure 13: A high-level
diagram of the developed

mutation tool Cooper, which
looks for relationships

between data and scripting
environments that operate

on that data to expose bugs
through mutual mutation.

TAKEAWAYS:
	 It should go without saying that adding a scripting execution

environment to a complex data format parser will result in security
concerns. PDF is already incredibly complicated to parse when well-
formed, and numerous bugs have surfaced when handling malformed
data – adding in the interactions between scripting engines and data
will continue to expose more for quite some time.

	 The concept of relationship-guided mutation is powerful as seen
here, but broadly applicable to many environments where data and the
code operating on that data are both attacker-controlled. Watch for this
technique being applied elsewhere with similarly impressive results.

Q2 202222

https://i.blackhat.com/Asia-22/Friday-Materials/AS-22-PengXu-Cooper-Knows-the-Shortest-Stave-Finding-134-Bugs-in-the-Binding-Code.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-353-paper.pdf
https://github.com/TCA-ISCAS/Cooper

Bypassing CSP with
dangling iframes

Bypassing Dangling Markup
Injection Mitigation Bypass
in ChromeAuthor: Gareth Heyes

Author: SeungJu Oh

TAKEAWAYS:
	 These types of attacks may affect payment

and transaction applications that depend
on iframes being protected from being
read and written to. The combination of
an application vulnerable to injection, as
well as the mitigation bypass, could lead to
compromised applications.

	 These types of mitigation bypasses have
found their way past the product testing and
mitigation testing. Despite being a known
class of attack, these two articles show it’s
very much an active area of exploration
when coupled with another arcane
feature (about:blank or protocol upgrades
respectively).

Figure 14: Example of a dangling iframe tag to inject a script and bypass the CSP.

Blog BlogBlog report

Chrome supports built-in dangling markup
mitigation in order to block requests containing
restricted characters. Dangling markup
mitigations built into the browser can help
protect an application that does not properly
filter or escape the > or “ characters. For example,
attackers can use crafted syntax to break out of
quoted attribute values and the enclosing tag,
and inject content they control.

The first article describes a Content Security
Policy (CSP) mitigation bypass in Chrome. The
author noticed one of their labs breaking with a
specific version of Chrome. Using their tool, the
Hackability Inspector, and probing for various
iframe properties and injection opportunities, the
author discovered that setting the iframe location
property to “about:blank” allowed the bypass
of the Chrome Mitigations to read and inject
scripts into the cross domain iframe. CSP treats
about:blank URLs as the same origin – however,
when an attacker sets a cross domain iframe to
about:blank,
it becomes readable and writable by an attacker
and is definitely not the same origin.

In the second article, the author found a situation
where a dangling tag interfered with Chromium’s
protocol upgrading. Chromium has a security

feature that automatically attempts to upgrade
unsafe HTTP protocols to HTTPS. For example,
if the src attribute of an tag uses an HTTP
scheme, the browser automatically upgrades the
scheme to HTTPS. On a page served via HTTPS, a
dangling img tag referencing a non-HTTPS source
could lead to content from the page being leaked
to an attacker.

Q2 202223

https://portswigger.net/research/bypassing-csp-with-dangling-iframes
https://portswigger.net/daily-swig/chromium-browsers-vulnerable-to-dangling-markup-injection
https://bugs.chromium.org/p/chromium/issues/detail?id=1297138

Pre-hijacked accounts: An Empirical
Study of Security Failures in User Account
Creation on the Web
Authors: Avinash
Sudhodanan and
Andrew Paverd

This work explored methods of hijacking accounts for online services via a novel
approach of registering a victim’s account prior to the victim, then waiting for the
victim to use the account. For many web services that have both a legacy username
and password authentication scheme, and have retrofitted their service to support
SSO providers, there are ways where an attacker can retain access to an account
without the victim knowing. The researchers built out a number of attack primitives,
and manually explored half of the Alexa top 150 most trafficked websites (those
excluded were region-specific variants of others included, sites without logins, or
sites in other languages) to determine vulnerability to their identified primitives, of
which a majority were impacted.

Some of the attack types relied on undefined behaviour when an account manually
created with an email and password was merged with an SSO federated account with
the same email. In some implementations the attacker could continue to use their
manual credentials while the victim would use the SSO access. Other edge cases
the researchers explored were with some services that allowed enterprise identity
verification providers that did not verify the email addresses (e.g., creating your own
provider in test account mode). This would then allow attackers to be treated as
authoritative account owners despite having no access to the victim’s email address.

Blog

Paper

Figure 15: A figure
summarising some of the

attack primitives discovered to
pre-hijack a victim account.

TAKEAWAYS:
	 While the reputational risks of not claiming an account have been explored

and in some cases protected against, this work shows a new security risk of not
claiming an account before an attacker.

	 SSO has spread across a diverse group of online services, and this work
shows that the details of how each service handles their retrofitting to support
SSO matters immensely. Due to the simplicity of SSO, both during account
creation and subsequent logins, it is easy to imagine pre-hijacked accounts
netting numerous users who never set a password to their account.

	 The non-verifying IdP attacks highlight the challenges of supporting the
diversity of the enterprise identity management products while also relying on
certain assumptions to offer SSO to the broadest customer base possible.

Q2 202224

https://msrc-blog.microsoft.com/2022/05/23/pre-hijacking-attacks/
https://arxiv.org/abs/2205.10174

Conclusion
Despite research that is surely being saved for next quarter’s “Hacker
Summer Camp”, the cadence of interesting work has continued apace,
bolstered by a strong complement of blogs. It remains to be seen if
this is a trend in the industry stemming from a long COVID-induced
hiatus, or selection bias as the ThinkstScapes pipeline for collecting
non-conference materials improves.

1.	New looks at network security for legacy and novel networks

2.	How modern programming languages and their environments shape software security

3.	 Framing how low-level researchers approach a new and foreign system target

As next quarter’s issue will include one of the largest multi-events of the year, expect some
gems held back for a dramatic reveal. While there are always a few talks that captivate the
media’s attention in the lead up to Hacker Summer Camp, check next quarter’s issue for the
field-shaping work that readers may not have caught.

 THREE THEMES EMERGED AT THE FOREFRONT OF
 INFORMATION SECURITY RESEARCH THIS QUARTER:

 Elephant’s warning at Kruger National Park in South Africa. Photo by Graham Hunt on Unsplash.

Q2 202225

 Valley of Desolation, South Africa . Photo by Wolfgang Hasselmann on Unsplash.

	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

	Button 2:
	Button 113:
	Button 118:
	Button 122:
	Button 126:
	Button 130:
	Button 135:
	Button 120:
	Button 123:
	Button 119:
	Button 124:
	Button 128:
	Button 132:
	Button 134:
	Button 121:
	Button 125:
	Button 129:
	Button 112:
	Button 114:
	Button 115:
	Button 116:
	Button 117:
	Button 6:
	Button 1014:
	Button 1015:
	Button 1016:
	Button 1017:
	Button 74:
	Button 1019:
	Button 111:
	Button 1021:
	Button 1022:
	Button 1023:
	Button 1025:
	Button 1024:
	Button 1047:
	Button 1027:
	Button 1029:
	Button 1030:
	Button 1031:
	Button 1036:
	Button 1035:
	Button 1034:
	Button 1037:
	Button 1043:
	Button 1038:
	Button 1039:
	Button 1040:
	Button 1041:
	Button 1051:
	Button 1044:
	Button 1045:
	Button 69:

