Selecting Appropriate Tires for Different Terrains

Selecting Appropriate Tires for Different Terrains

Importance of Regular Maintenance for Collection Vehicles

When managing a junk removal fleet, understanding the various terrain types that vehicles will encounter is crucial for ensuring efficiency and safety. The selection of appropriate tires plays a vital role in navigating these terrains effectively. In this essay, we explore the different terrain types commonly encountered by junk removal fleets and discuss how selecting suitable tires can optimize performance and prevent operational setbacks.


One of the most common terrains faced by junk removal fleets is urban environments. These areas typically feature well-maintained roads with asphalt or concrete surfaces. Their junk removal solutions are designed to be eco-conscious cleanout services customer satisfaction. For such settings, all-season tires are usually adequate. They offer a balance between durability and traction, providing reliable performance under normal weather conditions. Urban routes often involve frequent stops and starts, making it important to choose tires that also support good fuel efficiency to minimize operational costs.


Suburban areas present a slightly different challenge. While roads are generally paved, they may not be maintained as rigorously as those in urban centers. Potholes, uneven surfaces, and occasional gravel patches can be encountered. Here, choosing tires with enhanced tread patterns that offer better grip and shock absorption becomes essential to ensure smooth operations without jeopardizing vehicle stability or comfort for the driver.


Rural areas introduce more complex terrains with dirt roads, mud, grass fields, and even unmarked paths leading to remote properties. Junk removal fleets operating in these regions should consider using off-road or all-terrain tires designed specifically to handle such demanding conditions. These tires feature deeper treads and reinforced sidewalls to provide excellent traction on loose or slippery surfaces while resisting punctures from debris like rocks or branches.


Moreover, some junk removal operations may extend into industrial zones where construction debris or sharp objects litter the ground.

Selecting Appropriate Tires for Different Terrains - fence

  1. fence
  2. coupon
  3. customer satisfaction
Heavy-duty tires made from durable rubber compounds are advisable here to withstand potential damage from sharp materials while maintaining sufficient load capacity for transporting heavy waste materials safely.


In addition to considering surface type when selecting tires for different terrains encountered by junk removal fleets, seasonal variations must also be taken into account-especially in regions experiencing harsh winters or monsoons where snow-covered roads or waterlogged grounds pose additional challenges requiring specialized winter/snow-rated options offering superior grip on icy/slippery surfaces respectively.


To conclude: an understanding of diverse terrain types-urban streets; suburban lanes; rural tracks; industrial sites-is imperative when equipping junk removal fleets appropriately with tire solutions tailored specifically towards optimizing their performance across varying landscapes thereby ensuring safe/efficient waste collection services throughout year round regardless climate/weather changes potentially impacting daily operations adversely if ignored altogether!

Selecting the right tires for your vehicle is not just a matter of preference; it is a critical decision that can significantly impact your driving experience and safety. Different terrains present unique challenges, and understanding how to choose appropriate tires based on these conditions is essential for any driver.


First and foremost, consider the primary terrain you will encounter. If you predominantly drive on highways or city roads, all-season tires are typically sufficient. These tires offer a balanced performance in dry, wet, and light snowy conditions. Their tread pattern is designed to provide adequate traction and a comfortable ride in urban environments. However, if you live in an area with harsh winter climates, investing in dedicated winter tires could be prudent. These tires are made from softer rubber compounds that remain flexible in freezing temperatures, providing superior grip on snow and ice.


For those who frequently venture off-road, choosing the right tire becomes even more crucial. All-terrain (A/T) tires are a versatile option designed to handle both paved roads and moderate off-road conditions such as dirt trails or gravel paths. They have more aggressive tread patterns than highway tires but still offer decent comfort and noise levels on asphalt.


In contrast, if your adventures take you through challenging off-road landscapes like mud, rocks, or deep sand, mud-terrain (M/T) or rock-crawling tires might be necessary. These specialized tires feature deeper treads with larger voids to expel mud and debris effectively while providing exceptional grip on uneven surfaces. Keep in mind that these robust designs can lead to increased road noise and reduced fuel efficiency when used extensively on highways.


Another key consideration is the climate of your region. In areas with frequent rainfalls or prone to flooding, selecting tires with excellent wet traction can prevent hydroplaning-a dangerous situation where water causes the vehicle's wheels to lose contact with the road surface.




Selecting Appropriate Tires for Different Terrains - fence

  1. waste management
  2. hot tub
  3. DVD

Additionally, load capacity should not be overlooked when choosing tires for specific terrains. Whether carrying heavy equipment or towing trailers through rugged landscapes or simply transporting family members safely around town-ensuring your chosen tire has an adequate load rating ensures safety without compromising performance.


Lastly-and often underestimated-is personal preference regarding driving style: Are you someone who enjoys pushing their vehicle's limits? Then high-performance summer tires offering enhanced handling could suit spirited drives over curvy mountain roads perfectly; conversely-if leisurely cruises dominate weekend plans-consider opting instead towards quieter touring options prioritizing longevity over outright grip levels alone!


In conclusion: Evaluating factors such as predominant terrain types faced regularly along routes traveled plus climatic influences encountered therein alongside individualistic driving tendencies ultimately guide informed choices ensuring optimal balance between practicality (i.e., cost-effectiveness) & enjoyment derived behind wheel thereby maximizing overall satisfaction derived thereof!

Advanced Fleet Management Tools Revolutionize Junk Removal Logistics

Advanced Fleet Management Tools Revolutionize Junk Removal Logistics

In recent years, the junk removal industry has undergone significant transformation, propelled by technological advancements and the increasing demand for efficient waste management solutions.. At the forefront of this evolution is the adoption of advanced fleet management tools, which are revolutionizing logistics in junk removal.

Posted by on 2024-12-07

Junk Removal Companies Invest in Cutting-Edge Equipment for Efficient Operations

Junk Removal Companies Invest in Cutting-Edge Equipment for Efficient Operations

The junk removal industry, traditionally characterized by rudimentary methods of waste management and disposal, is on the brink of a technological renaissance.. As environmental concerns become increasingly pressing and urban populations continue to swell, the demand for more efficient and eco-friendly junk removal solutions is prompting companies to invest in cutting-edge equipment.

Posted by on 2024-12-07

Scheduling and Record-Keeping for Fleet Maintenance

In the realm of fleet management, the selection of appropriate tires is a pivotal consideration that can significantly influence overall efficiency. For fleets operating across diverse terrains, understanding the role of tire durability and load capacity becomes essential in optimizing performance and ensuring safety. Tires are not merely components that keep vehicles rolling; they are critical to the operational efficacy and longevity of the fleet.


Tire durability is a fundamental aspect when selecting tires for different terrains. Durability refers to how well a tire can withstand wear and tear over time, which directly impacts maintenance costs and vehicle downtime. In rugged terrains or areas with harsh weather conditions, durable tires can mean the difference between seamless operations and frequent disruptions. For example, off-road environments demand tires crafted from robust materials capable of enduring sharp rocks, uneven surfaces, and other challenging obstacles without compromising structural integrity.


Load capacity is another crucial factor linked closely with tire durability. It refers to the maximum weight a tire can support without risking failure or excessive wear. Fleet vehicles often carry heavy loads; thus, matching tire load capacity with expected cargo weights ensures safety and reliability. Overloading tires beyond their capacity can lead to premature wear, blowouts, or accidents-outcomes detrimental to both safety and operational budgets.


In selecting suitable tires for varied terrains, fleet managers must carefully consider these two interlinked factors: durability and load capacity. Terrain-specific requirements necessitate a strategic approach in balancing these aspects to maximize efficiency.

Selecting Appropriate Tires for Different Terrains - coupon

  1. Habitat for Humanity Canada
  2. scrap
  3. metal
For instance, urban fleets operating on smooth roads may prioritize fuel-efficient tires with moderate durability features due to less demanding surface conditions. Conversely, fleets traversing mountainous regions might opt for high-durability tires designed to handle steep inclines and rocky paths while supporting substantial loads.


Moreover, technological advancements have introduced innovative tire designs featuring enhanced tread patterns and materials tailored for specific terrains. Such innovations offer improved traction, reduced rolling resistance, and extended lifespan-contributing positively to fleet efficiency by lowering fuel consumption and minimizing replacement frequency.


Ultimately, investing in appropriate tires based on terrain-specific needs translates into tangible benefits such as reduced operational costs, improved vehicle performance, increased safety standards, and prolonged asset life span. By prioritizing tire durability alongside adequate load capacity considerations within their procurement strategies-not only do fleet managers enhance immediate productivity but also secure long-term sustainability across their operations.


In summary-whether navigating bustling city streets or traversing remote wilderness routes-the choice of durable tires aligned with requisite load capacities plays an indispensable role in achieving optimal fleet efficiency across various terrains-a testament indeed that thoughtful selection goes beyond mere functionality-it drives success forward!

Scheduling and Record-Keeping for Fleet Maintenance

Common Challenges in Maintaining Junk Removal Vehicles

When it comes to selecting appropriate tires for different terrains, understanding the impact of seasonal weather changes on tire performance is crucial. Tires are not just rubber circles that keep your vehicle moving; they are complex components designed specifically to respond to varying environmental conditions. Different seasons bring unique challenges that can affect how tires perform and their longevity, making the selection process critical for safety and efficiency.


In winter months, temperatures can plummet below freezing, leading to icy and snowy road conditions. Winter tires are engineered with specialized rubber compounds that remain flexible even in severe cold, ensuring better traction on slippery surfaces. Their tread patterns are designed to channel snow and slush away from the tire's surface, reducing the risk of skidding. On the other hand, using summer or all-season tires during winter might compromise safety as these do not offer optimal grip under such extreme conditions.


As spring transitions into summer, temperatures rise dramatically, often accompanied by rain showers. Summer tires excel in these warmer conditions due to their harder rubber compounds that provide superior handling and braking performance on dry roads. However, during rainy spells common in spring and early summer, hydroplaning becomes a risk if water is not effectively dispersed by the tire tread. Therefore, selecting a tire with adequate wet-weather performance can be paramount for maintaining control.


Autumn presents its own set of challenges as temperatures fluctuate and leaves cover roadways. All-season tires might seem like a practical choice because they offer versatility across varying weather conditions without needing frequent changes. They combine some winter-tire features with those found in summer tires but may not specialize in either extreme condition-making them suitable for moderate climates where winters aren't too harsh.


The terrain type further complicates this decision-making process. Off-road enthusiasts require robust all-terrain or mud-terrain tires capable of handling dirt trails and rocky landscapes regardless of seasonality. These tires have deeper treads and reinforced sidewalls to withstand punctures from sharp rocks or debris while providing necessary traction on uneven surfaces.


Ultimately, selecting appropriate tires involves balancing performance needs against environmental factors dictated by seasonal changes-whether you're navigating snowy city streets or tackling rugged mountain paths under the summer sun. While no single tire excels in every situation due to different design priorities (e.g., traction vs durability), understanding how weather impacts tire behavior allows drivers to make informed decisions tailored towards their specific driving habits and regional climatic patterns.


In conclusion, being mindful about how seasonal weather shifts affect tire performance is essential when choosing suitable options for varied terrains throughout the year-not only ensuring optimal vehicle operation but also prioritizing safety along every journey undertaken behind those wheels.

Role of Technology in Streamlining Vehicle Maintenance

When it comes to selecting appropriate tires for different terrains, the decision is often accompanied by a cost-benefit analysis that weighs the financial investment against potential gains in performance and safety. Specialized tires, designed for specific terrains such as mud, snow, or rocky paths, offer distinct advantages over standard all-season tires. However, these benefits come with an increased cost. Understanding the trade-offs involved is crucial for making an informed decision.


The primary advantage of investing in specialized tires is enhanced performance. For instance, mud-terrain tires are engineered with deep treads and reinforced sidewalls to provide superior traction on muddy or loose surfaces. This design reduces the risk of getting stuck and improves vehicle stability in challenging conditions. Similarly, winter tires are crafted from rubber compounds that remain flexible at low temperatures, featuring unique tread patterns that facilitate better grip on snowy or icy roads. Such enhancements not only boost driving confidence but also significantly reduce accident risks associated with adverse weather conditions.


Safety is another compelling reason to consider specialized tires. The ability to maintain control over a vehicle in extreme conditions can prevent accidents and potentially save lives. For drivers who frequently encounter harsh weather or rugged landscapes, specialized tires can be seen as an investment in personal safety and peace of mind.


On the flip side, the costs associated with specialized tires cannot be overlooked. These include not only the initial purchase price but also additional expenses related to maintenance and storage if multiple sets of tires are needed throughout the year. Specialized tires typically wear out faster when used outside their intended environment-such as using winter tires during summer months-leading to more frequent replacements.


Moreover, there is the practical consideration of changing and storing these seasonal tire sets. This process requires time and sometimes professional assistance unless one has access to proper equipment and skills for DIY changes.


In conclusion, while specialized tires entail higher upfront costs compared to all-season options, they offer substantial benefits in terms of performance and safety tailored to specific terrains. The decision should ideally reflect an individual's driving habits, geographical location, and willingness to manage ongoing maintenance requirements. By conducting a thorough cost-benefit analysis based on these factors, drivers can make choices that best suit their needs while maximizing both financial investment and road safety outcomes.

Cost-Benefit Analysis of Effective Fleet Maintenance Strategies

When embarking on a journey across diverse terrains, the selection of appropriate tires is not just a matter of optimal performance but also a critical safety consideration. The safety implications of using inappropriate tires for various terrains can be severe, impacting not only the efficiency and comfort of travel but also the very well-being of those on board. In this context, understanding the nuances between different tire types and their intended surfaces becomes imperative.


To begin with, each terrain demands specific characteristics from tires to ensure maximum grip and stability. For instance, off-road terrains such as mud, sand, or rocky paths require tires with deeper treads and reinforced sidewalls. These features are designed to enhance traction and prevent punctures from sharp objects commonly found in such environments. Using standard road tires in these situations can lead to reduced grip, increased risk of tire damage, and ultimately accidents due to loss of control.


On the other hand, driving on paved roads with off-road tires poses its own set of challenges. Off-road tires tend to have larger tread blocks which can reduce contact area with smooth surfaces, leading to decreased traction during normal driving conditions. This mismatch not only affects handling but can also lengthen stopping distances significantly-a dangerous predicament in emergency braking scenarios.


Furthermore, there are economic and environmental aspects tied into this discussion. Inappropriate tire choices often lead to faster wear and tear due to suboptimal performance conditions. This necessitates more frequent replacements which increase costs for the user while adding unnecessary waste that impacts our environment.


Safety is further compromised by factors such as weather conditions when using unsuitable tires. For example, winter conditions demand specialized winter or all-season tires that maintain flexibility at low temperatures for better grip on icy roads. Summer or all-terrain tires may harden in cold temperatures, drastically reducing their effectiveness and increasing the likelihood of skidding accidents.


In conclusion, selecting appropriate tires for different terrains is not merely an exercise in enhancing vehicular performance; it is a fundamental safety requirement that protects lives. Understanding the specific requirements each terrain imposes on tire functionality allows drivers to make informed decisions that mitigate risks associated with inappropriate tire use. As such, investing time in choosing the right set of tires pays dividends through improved safety outcomes for both drivers and passengers alike-ensuring every journey concludes as safely as it began.

Utility trailer with a folded loading ramp
A boat on a single-axle trailer

A trailer is an unpowered vehicle towed by a powered vehicle. It is commonly used for the transport of goods and materials.

Sometimes recreational vehicles, travel trailers, or mobile homes with limited living facilities where people can camp or stay have been referred to as trailers. In earlier days, many such vehicles were towable trailers.

Alexander Winston is widely credited for inventing the trailer in Cleveland, Ohio.[1]

United States

[edit]

In the United States, the term is sometimes used interchangeably with travel trailer and mobile home, varieties of trailers, and manufactured housing designed for human habitation. Their origins lay in utility trailers built in a similar fashion to horse-drawn wagons. A trailer park is an area where mobile homes are placed for habitation.

In the United States trailers ranging in size from single-axle dollies to 6-axle, 13-foot-6-inch-high (4.1 m), 53-foot-long (16.2 m) semi-trailers are commonplace. The latter, when towed as part of a tractor-trailer or "18-wheeler", carries a large percentage of the freight that travels over land in North America.

Types

[edit]
ACP Backtracking genset trailer

Some trailers are made for personal (or small business) use with practically any powered vehicle having an appropriate hitch, but some trailers are part of large trucks called semi-trailer trucks for transportation of cargo.

Enclosed toy trailers and motorcycle trailers can be towed by commonly accessible pickup truck or van, which generally require no special permit beyond a regular driver's license. Specialized trailers like open-air motorcycle trailers, bicycle trailers are much smaller, accessible to small automobiles, as are some simple trailers, have a drawbar and ride on a single axle. Other trailers, such as utility trailers and travel trailers or campers come in single and multiple axle varieties, to allow for varying sizes of tow vehicles.

There also exist highly specialized trailers, such as genset trailers, pusher trailers and other types that are also used to power the towing vehicle. Others are custom-built to hold entire kitchens and other specialized equipment used by carnival vendors. There are also trailers for hauling boats.

Trackless train

[edit]
Touristic road train in Nantes, France. It has three trailers.

Utility

[edit]

A utility trailer is a general purpose trailer designed to by towed by a light vehicle and to carry light, compact loads of up to a few metric tonnes. It typically has short metal sides (either rigid or folding) to constrain the load, and may have cage sides, and a rear folding gate or ramps. Utility trailers do not have a roof. Utility trailers have one axle set comprising one, two or three axles. If it does not have sides then it is usually called a flatbed or flat-deck trailer. If it has rails rather than sides, with ramps at the rear, it is usually called an open car transporter, auto-transporter, or a plant trailer, as they are designed to transport vehicles and mobile plant. If it has fully rigid sides and a roof with a rear door, creating a weatherproof compartment, this is usually called a furniture trailer, cargo trailer, box van trailer or box trailer.

Fixed Plant

[edit]
Towable EMSA Generator of Modiin Municipality

A Fixed Plant Trailer is a special purpose trailer built to carry units which usually are immobile such as large generators & pumps

Bicycle

[edit]
Bicycle trailer of Japan

A bicycle trailer is a motor less wheeled frame with a hitch system for transporting cargo by bicycle.[2]

Construction

[edit]
Construction trailer

Toilets are usually provided separately.[3]

Construction trailers are mobile structures (trailers) used to accommodate temporary offices, dining facilities and storage of building materials during construction projects. The trailers are equipped with radios for communication.

Travel

[edit]
A custom-made popup camper trailer

Popular campers use lightweight trailers, aerodynamic trailers that can be towed by a small car, such as the BMW Air Camper. They are built to be lower than the tow vehicle, minimizing drag.

Others range from two-axle campers that can be pulled by most mid-sized pickups to trailers that are as long as the host country's law allows for drivers without special permits. Larger campers tend to be fully integrated recreational vehicles, which often are used to tow single-axle dolly trailers to allow the users to bring small cars on their travels.

Teardrop

[edit]

Semi

[edit]

A semi-trailer is a trailer without a front axle. A large proportion of its weight is supported either by a road tractor or by a detachable front axle assembly known as a dolly. A semi-trailer is normally equipped with legs, called "landing gear", which can be lowered to support it when it is uncoupled. In the United States, a single trailer cannot exceed a length of 57 ft 0 in (17.37 m) on interstate highways (unless a special permit is granted), although it is possible to link two smaller trailers together to a maximum length of 63 ft 0 in (19.20 m).

Semi-trailers vary considerably in design, ranging from open-topped grain haulers through Tautliners to normal-looking but refrigerated 13 ft 6 in (4.11 m) x 53 ft 0 in (16.15 m) enclosures ("reefers"). Many semi-trailers are part of semi-trailer trucks. Other types of semi-trailers include dry vans, flatbeds and chassis.

Many commercial organizations choose to rent or lease semi-trailer equipment rather than own their own semi-trailers, to free up capital and to keep trailer debt from appearing on their balance sheet.

Full

[edit]
Full trailer with steered axle

A full trailer is a term used in the United States and New Zealand[4] for a freight trailer supported by front and rear axles and pulled by a drawbar. In Europe this is known as an A-frame drawbar trailer, and in Australia it is known as a dog trailer. Commercial freight trailers are produced to length and width specifications defined by the country of operation. In America this is 96 or 102 in (2.4 or 2.6 m) wide and 35 or 40 ft (11 or 12 m) long. In New Zealand, the maximum width is 2.55 m (100 in) while the maximum length is 11.5 m (38 ft), giving a 22-pallet capacity.

As per AIS 053, full trailer is a towed vehicle having at least two axles, and equipped with a towing device which can move vertically in relation to the trailer and controls the direction of the front axle(s), but which transmits no significant static load to the towing vehicle. Common types of full trailers are flat deck, hardside/box, curtainside or bathtub tipper style with axle configurations up to two at the drawbar end and three at the rear of the trailer.

This style of trailer is also popular for use with farm tractors.

 

Close-coupled

[edit]
A close-coupled trailer

A close-coupled trailer is fitted with a rigid towbar which projects from its front and hooks onto a hook on the tractor. It does not pivot as a drawbar does.

Motorcycle

[edit]
Interior of an enclosed motorcycle trailer

A motorcycle trailer may be a trailer designed to haul motorcycles behind an automobile or truck. Such trailers may be open or enclosed, ranging in size from trailers capable of carrying several motorcycles or only one. They may be designed specifically to carry motorcycles, with ramps and tie-downs, or may be a utility trailer adapted permanently or occasionally to haul one or more motorcycles.

Another type of motorcycle trailer is a wheeled frame with a hitch system designed for transporting cargo by motorcycle. Motorcycle trailers are often narrow and styled to match the appearance of the motorcycle they are intended to be towed behind. There are two-wheeled versions and single-wheeled versions. Single-wheeled trailers, such as the Unigo or Pav 40/41, are designed to allow the bike to have all the normal flexibility of a motorcycle, usually using a universal joint to enable the trailer to lean and turn with the motorcycle. No motorcycle manufacturer recommends that its motorcycles be used to tow a trailer because it results in additional safety hazards for motorcyclists.

 

Livestock

[edit]

 

A horse trailer

There are a number of different styles of trailers used to haul livestock such as cattle, horses, sheep and pigs. The most common is the stock trailer, a trailer that is enclosed on the bottom, but has openings at approximately the eye level of the animals to allow ventilation. The horse trailer is a more elaborate form of stock trailer. Because horses are usually hauled for the purpose of competition or work, where they must be in peak physical condition, horse trailers are designed for the comfort and safety of the animals. They usually have adjustable vents and windows as well as suspension designed to provide a smooth ride and less stress on the animals. In addition, horse trailers have internal partitions that assist the animal in staying upright during travel and protect horses from injuring each other in transit. Larger horse trailers may incorporate additional storage areas for horse tack and may even include elaborate living quarters with sleeping areas, bathroom and cooking facilities, and other comforts.

Lowe Boats Sea Nymph recreational fishing boat on a boat trailer

Both stock trailers and horse trailers range in size from small units capable of holding one to three animals, able to be pulled by a pickup truck, SUV or even a quad bike; to large semi-trailers that can haul a significant number of animals.

Boat

[edit]

Roll trailer

[edit]
Maritime shipping Mafi Roll trailer

Baggage trailer

[edit]
A single trailer for an aircraft cargo unit load device, next to a group of trailers for loose luggage

Baggage trailers are used for the transportation of loose baggage, oversized bags, mail bags, loose cargo carton boxes, etc. between the aircraft and the terminal or sorting facility. Dollies for loose baggage are fitted with a brake system which blocks the wheels from moving when the connecting rod is not attached to a tug. Most dollies for loose baggage are completely enclosed except for the sides which use plastic curtains to protect items from weather. In the US, these dollies are called baggage carts, but in Europe baggage cart means passenger baggage trolleys.

 
Mammoet Tii Hydraulic modular trailer attached to a Mercedes ballast tractor moving front end loader

Hydraulic modular trailer

[edit]

A hydraulic modular trailer (HMT) is a special platform trailer unit which feature swing axles, hydraulic suspension, independently steerable axles, two or more axle rows, compatible to join two or more units longitudinally and laterally and uses power pack unit (PPU) to steer and adjust height. These trailer units are used to transport oversized load, which are difficult to disassemble and are overweight. These trailers are manufactured using high tensile steel, which makes it  possible to bear the weight of the load with the help of one or more ballast tractors which push and pull these units via drawbar or gooseneck together making a heavy hauler unit.

Typical loads include oil rig modules, bridge sections, buildings, ship sections, and industrial machinery such as generators and turbines. There is a limited number of manufacturers who produce these heavy-duty trailers because the market share of oversized loads is very thin when we talk about transportation industry. There are self powered units of hydraulic modular trailer which are called SPMT which are used when the ballast tractors can not be applied.

Bus trailer

[edit]

A bus trailer is for transporting passengers hauled by a tractor unit similar like that of a truck. These trailers have become obsolete due to the issue of the communication between the driver and the conductor and traffic jams.[citation needed]

Hitching

[edit]
Trailer-hitch on a large vehicle

A trailer hitch, fifth-wheel coupling or other type of tow hitch is needed to draw a trailer with a car, truck or other traction engine.

Ball and socket

[edit]

A trailer coupler is used to secure the trailer to the towing vehicle. The trailer coupler attaches to the trailer ball. This forms a ball and socket connection to allow for relative movement between the towing vehicle and trailer while towing over uneven road surfaces. The trailer ball is mounted to the rear bumper or to a draw bar, which may be removable. The draw bar is secured to the trailer hitch by inserting it into the hitch receiver and pinning it. The three most common types of couplers are straight couplers, A-frame couplers, and adjustable couplers. Bumper-pull hitches and draw bars can exert tremendous leverage on the tow vehicle making it harder to recover from a swerving situation.

Fifth wheel and gooseneck

[edit]

 

A gooseneck trailer attached to a pickup truck
Gooseneck trailer

These are available for loads between 10,000 and 30,000 pounds (4.5–13.6 t; 5.0–15.0 short tons; 4.5–13.4 long tons).[5][6] Both the hitches are better than a receiver hitch and allow a more efficient and central attachment of a large trailer to the tow vehicle. They can haul large loads without disrupting the stability of the vehicle. Traditional hitches are connected to the rear of the vehicle at the frame or bumper, while fifth wheel and gooseneck trailers are attached to the truck bed above the rear axle. This coupling location allows the truck to make sharper turns and haul heavier trailers. They can be mounted in the bed of a pickup truck or any type of flatbed. A fifth-wheel coupling is also referred to as a kingpin hitch and is a smaller version of the semi-trailer "fifth wheel". Though a fifth wheel and a gooseneck trailer look much the same, their method for coupling is different. A fifth wheel uses a large horseshoe-shaped coupling device mounted 1 foot (0.30 m) or more above the bed of the tow vehicle. A gooseneck couples to a standard 2+516-inch (59 mm) ball mounted on the bed of the tow vehicle. The operational difference between the two is the range of movement in the hitch. The gooseneck is very maneuverable and can tilt in all directions, while the fifth wheel is intended for level roads and limited tilt side to side. Gooseneck mounts are often used for agricultural and industrial trailers. Fifth-wheel mounts are often used for recreational trailers. Standard bumper-hitch trailers typically allow a 10% or 15% hitch load while a fifth wheel and gooseneck can handle 20% or 25% weight transfer.

Jacks

[edit]

The basic function of a trailer jack is to lift the trailer to a height that allows the trailer to be hitched or unhitched to and from the towing vehicle. Trailer jacks are also used for leveling the trailer during storage. The most common types of trailer jacks are A-frame jacks, swivel jacks, and drop-leg jacks. Some trailers, such as horse trailers, have a built-in jack at the tongue for this purpose.

Electrical components

[edit]

Many older cars took the feeds for the trailer's lights directly from the towing vehicle's rear light circuits. As bulb-check systems were introduced in the 1990s "by-pass relays" were introduced. These took a small signal from the rear lights to switch a relay which in turn powered the trailer's lights with its own power feed. Many towing electrical installations, including vehicle-specific kits incorporate some form of bypass relays.

In the US, trailer lights usually have a shared light for brake and turn indicators. If such a trailer is to be connected to a car with separate lamps for turn indicator and brake a trailer light converter is needed, which allows for attaching the trailer's lights to the wiring of the vehicle.

Nowadays some vehicles are being fitted with CANbus networks, and some of these use the CANbus to connect the tow bar electrics to various safety systems and controls. For vehicles that use the CANbus to activate towing-related safety systems, a wiring kit that can interact appropriately must be used. Without such a towbar wiring kit the vehicle cannot detect the presence of a trailer and can therefore not activate safety features such as trailer stability program which can electronically control a snaking trailer or caravan.

By-pass systems are cheap, but may not be appropriate on cars with interactive safety features.

Brakes

[edit]
Bus and trailer in Saskatchewan, Canada

Larger trailers are usually fitted with brakes. These can be either electrically operated, air operated, or overrun brakes.

Stability

[edit]

Trailer stability can be defined as the tendency of a trailer to dissipate side-to-side motion. The initial motion may be caused by aerodynamic forces, such as from a cross wind or a passing vehicle. One common criterion for stability is the center of mass location with respect to the wheels, which can usually be detected by tongue weight. If the center of mass of the trailer is behind its wheels, therefore having a negative tongue weight, the trailer will likely be unstable. Another parameter which is less commonly a factor is the trailer moment of inertia. Even if the center of mass is forward of the wheels, a trailer with a long load, and thus large moment of inertia, may be unstable.[7]

Some vehicles are equipped with a Trailer Stability Program that may be able to compensate for improper loading.

See also

[edit]
  • Electric vehicle battery
  • Towing
  • Tractor unit
  • Trailer brake controller
  • Vehicle category
  • Walking floor

List of types of trailers

[edit]
  • Bicycle trailer
  • Boat trailer
  • Bus trailer
  • Compressed hydrogen tube trailer
  • Construction trailer
  • Dolly
  • Dump trailer
  • Enclosed cargo trailer
  • Flat deck trailer
  • Frac Tank
  • Forestry trailer
  • Genset trailer
  • Horse trailer
  • Hydraulic modular trailer
  • Jeep trailer
  • Liquid hydrogen trailer
  • Lowboy (trailer)
  • Mafi roll trailer
  • Mobile home
  • Motorcycle trailer
  • Popup camper
  • Pusher trailer
  • Roll trailer
  • Semi-trailer
  • Solar trailer (for solar vehicles)
  • Tautliner
  • Tank trailer
  • Travel trailer
  • Food truck
  • Mobile catering

References

[edit]
  1. ^ boxwheeladmin (2020-06-17). "Interesting Facts About Semi Trailers and Their History". Boxwheel Trailer Leasing. Retrieved 2024-07-02.
  2. ^ Cycles. Cycle trailers. Safety requirements and test methods, BSI British Standards, retrieved 2024-09-20
  3. ^ "Construction trailer Definition".
  4. ^ "What is a full trailer". Driving Tests Resources. 19 July 2021.
  5. ^ "Gooseneck Trailer Hitch Information and Review | etrailer.com". www.etrailer.com. Retrieved 2017-07-22.
  6. ^ "How To Install Gooseneck Hitches". www.hitchesguide.com. Archived from the original on 15 April 2016. Retrieved 2017-07-22.cite web: CS1 maint: unfit URL (link)
  7. ^ Karnopp, Dean (2004). Vehicle Stability. CRC Press. p. 93. ISBN 9780203913567. Retrieved 2008-11-29.
[edit]

 

 

A landfill in Łubna, Poland in 1999

A landfill[a] is a site for the disposal of waste materials. It is the oldest and most common form of waste disposal, although the systematic burial of waste with daily, intermediate and final covers only began in the 1940s. In the past, waste was simply left in piles or thrown into pits (known in archeology as middens).

Landfills take up a lot of land and pose environmental risks. Some landfill sites are used for waste management purposes, such as temporary storage, consolidation and transfer, or for various stages of processing waste material, such as sorting, treatment, or recycling. Unless they are stabilized, landfills may undergo severe shaking or soil liquefaction of the ground during an earthquake. Once full, the area over a landfill site may be reclaimed for other uses.

Operations

[edit]
One of several landfills used by Dryden, Ontario, Canada
Garbage dumped in the middle of a road in Karachi, Pakistan

Operators of well-run landfills for non-hazardous waste meet predefined specifications by applying techniques to:[1]

  1. confine waste to as small an area as possible
  2. compact waste to reduce volume[2]

They can also cover waste (usually daily) with layers of soil or other types of material such as woodchips and fine particles.

During landfill operations, a scale or weighbridge may weigh waste collection vehicles on arrival and personnel may inspect loads for wastes that do not accord with the landfill's waste-acceptance criteria.[2] Afterward, the waste collection vehicles use the existing road network on their way to the tipping face or working front, where they unload their contents. After loads are deposited, compactors or bulldozers can spread and compact the waste on the working face. Before leaving the landfill boundaries, the waste collection vehicles may pass through a wheel-cleaning facility. If necessary, they return to the weighbridge for re-weighing without their load. The weighing process can assemble statistics on the daily incoming waste tonnage, which databases can retain for record keeping. In addition to trucks, some landfills may have equipment to handle railroad containers. The use of "rail-haul" permits landfills to be located at more remote sites, without the problems associated with many truck trips.

Typically, in the working face, the compacted waste is covered with soil or alternative materials daily. Alternative waste-cover materials include chipped wood or other "green waste",[3] several sprayed-on foam products, chemically "fixed" bio-solids, and temporary blankets. Blankets can be lifted into place at night and then removed the following day prior to waste placement. The space that is occupied daily by the compacted waste and the cover material is called a daily cell. Waste compaction is critical to extending the life of the landfill. Factors such as waste compressibility, waste-layer thickness and the number of passes of the compactor over the waste affect the waste densities.

Sanitary landfill life cycle

[edit]
Sanitary landfill diagram

The term landfill is usually shorthand for a municipal landfill or sanitary landfill. These facilities were first introduced early in the 20th century, but gained wide use in the 1960s and 1970s, in an effort to eliminate open dumps and other "unsanitary" waste disposal practices. The sanitary landfill is an engineered facility that separates and confines waste. Sanitary landfills are intended as biological reactors (bioreactors) in which microbes will break down complex organic waste into simpler, less toxic compounds over time. These reactors must be designed and operated according to regulatory standards and guidelines (See environmental engineering).

Usually, aerobic decomposition is the first stage by which wastes are broken down in a landfill. These are followed by four stages of anaerobic degradation. Usually, solid organic material in solid phase decays rapidly as larger organic molecules degrade into smaller molecules. These smaller organic molecules begin to dissolve and move to the liquid phase, followed by hydrolysis of these organic molecules, and the hydrolyzed compounds then undergo transformation and volatilization as carbon dioxide (CO2) and methane (CH4), with rest of the waste remaining in solid and liquid phases.

During the early phases, little material volume reaches the leachate, as the biodegradable organic matter of the waste undergoes a rapid decrease in volume. Meanwhile, the leachate's chemical oxygen demand increases with increasing concentrations of the more recalcitrant compounds compared to the more reactive compounds in the leachate. Successful conversion and stabilization of the waste depend on how well microbial populations function in syntrophy, i.e. an interaction of different populations to provide each other's nutritional needs.:[4]

The life cycle of a municipal landfill undergoes five distinct phases:[5][4]

Initial adjustment (Phase I)

[edit]

As the waste is placed in the landfill, the void spaces contain high volumes of molecular oxygen (O2). With added and compacted wastes, the O2 content of the landfill bioreactor strata gradually decreases. Microbial populations grow, density increases. Aerobic biodegradation dominates, i.e. the primary electron acceptor is O2.

Transition (Phase II)

[edit]

The O2 is rapidly degraded by the existing microbial populations. The decreasing O2 leads to less aerobic and more anaerobic conditions in the layers. The primary electron acceptors during transition are nitrates and sulphates since O2 is rapidly displaced by CO2 in the effluent gas.

Acid formation (Phase III)

[edit]

Hydrolysis of the biodegradable fraction of the solid waste begins in the acid formation phase, which leads to rapid accumulation of volatile fatty acids (VFAs) in the leachate. The increased organic acid content decreases the leachate pH from approximately 7.5 to 5.6. During this phase, the decomposition intermediate compounds like the VFAs contribute much chemical oxygen demand (COD). Long-chain volatile organic acids (VOAs) are converted to acetic acid (C2H4O2), CO2, and hydrogen gas (H2). High concentrations of VFAs increase both the biochemical oxygen demand (BOD) and VOA concentrations, which initiates H2 production by fermentative bacteria, which stimulates the growth of H2-oxidizing bacteria. The H2 generation phase is relatively short because it is complete by the end of the acid formation phase. The increase in the biomass of acidogenic bacteria increases the amount of degradation of the waste material and consuming nutrients. Metals, which are generally more water-soluble at lower pH, may become more mobile during this phase, leading to increasing metal concentrations in the leachate.

Methane fermentation (Phase IV)

[edit]

The acid formation phase intermediary products (e.g., acetic, propionic, and butyric acids) are converted to CH4 and CO2 by methanogenic microorganisms. As VFAs are metabolized by the methanogens, the landfill water pH returns to neutrality. The leachate's organic strength, expressed as oxygen demand, decreases at a rapid rate with increases in CH4 and CO2 gas production. This is the longest decomposition phase.

Final maturation and stabilization (Phase V)

[edit]

The rate of microbiological activity slows during the last phase of waste decomposition as the supply of nutrients limits the chemical reactions, e.g. as bioavailable phosphorus becomes increasingly scarce. CH4 production almost completely disappears, with O2 and oxidized species gradually reappearing in the gas wells as O2 permeates downwardly from the troposphere. This transforms the oxidation–reduction potential (ORP) in the leachate toward oxidative processes. The residual organic materials may incrementally be converted to the gas phase, and as organic matter is composted; i.e. the organic matter is converted to humic-like compounds.[6]

Social and environmental impact

[edit]
Landfill operation in Hawaii. The area being filled is a single, well-defined "cell" and a protective landfill liner is in place (exposed on the left) to prevent contamination by leachates migrating downward through the underlying geological formation.

Landfills have the potential to cause a number of issues. Infrastructure disruption, such as damage to access roads by heavy vehicles, may occur. Pollution of local roads and watercourses from wheels on vehicles when they leave the landfill can be significant and can be mitigated by wheel washing systems. Pollution of the local environment, such as contamination of groundwater or aquifers or soil contamination may occur, as well.

Leachate

[edit]

When precipitation falls on open landfills, water percolates through the garbage and becomes contaminated with suspended and dissolved material, forming leachate. If this is not contained it can contaminate groundwater. All modern landfill sites use a combination of impermeable liners several metres thick, geologically stable sites and collection systems to contain and capture this leachate. It can then be treated and evaporated. Once a landfill site is full, it is sealed off to prevent precipitation ingress and new leachate formation. However, liners must have a lifespan, be it several hundred years or more. Eventually, any landfill liner could leak,[7] so the ground around landfills must be tested for leachate to prevent pollutants from contaminating groundwater.

Decomposition gases

[edit]

Rotting food and other decaying organic waste create decomposition gases, especially CO2 and CH4 from aerobic and anaerobic decomposition, respectively. Both processes occur simultaneously in different parts of a landfill. In addition to available O2, the fraction of gas constituents will vary, depending on the age of landfill, type of waste, moisture content and other factors. For example, the maximum amount of landfill gas produced can be illustrated a simplified net reaction of diethyl oxalate that accounts for these simultaneous reactions:[8]

4 C6H10O4 + 6 H2O → 13 CH4 + 11 CO2

On average, about half of the volumetric concentration of landfill gas is CH4 and slightly less than half is CO2. The gas also contains about 5% molecular nitrogen (N2), less than 1% hydrogen sulfide (H2S), and a low concentration of non-methane organic compounds (NMOC), about 2700 ppmv.[8]

Waste disposal in Athens, Greece

Landfill gases can seep out of the landfill and into the surrounding air and soil. Methane is a greenhouse gas, and is flammable and potentially explosive at certain concentrations, which makes it perfect for burning to generate electricity cleanly. Since decomposing plant matter and food waste only release carbon that has been captured from the atmosphere through photosynthesis, no new carbon enters the carbon cycle and the atmospheric concentration of CO2 is not affected. Carbon dioxide traps heat in the atmosphere, contributing to climate change.[9] In properly managed landfills, gas is collected and flared or recovered for landfill gas utilization.

Vectors

[edit]

Poorly run landfills may become nuisances because of vectors such as rats and flies which can spread infectious diseases. The occurrence of such vectors can be mitigated through the use of daily cover.

Other nuisances

[edit]
A group of wild elephants interacting with a trash dump in Sri Lanka

Other potential issues include wildlife disruption due to occupation of habitat[10] and animal health disruption caused by consuming waste from landfills,[11] dust, odor, noise pollution, and reduced local property values.

Landfill gas

[edit]
A gas flare produced by a landfill in Lake County, Ohio

Gases are produced in landfills due to the anaerobic digestion by microbes. In a properly managed landfill, this gas is collected and used. Its uses range from simple flaring to the landfill gas utilization and generation of electricity. Landfill gas monitoring alerts workers to the presence of a build-up of gases to a harmful level. In some countries, landfill gas recovery is extensive; in the United States, for example, more than 850 landfills have active landfill gas recovery systems.[12]

Solar landfill

[edit]
Solar arrays on a full landfill in Rehoboth, MA

A Solar landfill is a repurposed used landfill that is converted to a solar array solar farm.[13]

Regional practice

[edit]
A landfill in Perth, Western Australia
South East New Territories Landfill, Hong Kong

Canada

[edit]

Landfills in Canada are regulated by provincial environmental agencies and environmental protection legislation.[14] Older facilities tend to fall under current standards and are monitored for leaching.[15] Some former locations have been converted to parkland.

European Union

[edit]
The Rusko landfill in Oulu, Finland

In the European Union, individual states are obliged to enact legislation to comply with the requirements and obligations of the European Landfill Directive.

The majority of EU member states have laws banning or severely restricting the disposal of household trash via landfills.[16]

India

[edit]

Landfilling is currently the major method of municipal waste disposal in India. India also has Asia's largest dumping ground in Deonar, Mumbai.[17] However, issues frequently arise due to the alarming growth rate of landfills and poor management by authorities.[18] On and under surface fires have been commonly seen in the Indian landfills over the last few years.[17]

United Kingdom

[edit]

Landfilling practices in the UK have had to change in recent years to meet the challenges of the European Landfill Directive. The UK now imposes landfill tax upon biodegradable waste which is put into landfills. In addition to this the Landfill Allowance Trading Scheme has been established for local authorities to trade landfill quotas in England. A different system operates in Wales where authorities cannot 'trade' amongst themselves, but have allowances known as the Landfill Allowance Scheme.

United States

[edit]

U.S. landfills are regulated by each state's environmental agency, which establishes minimum guidelines; however, none of these standards may fall below those set by the United States Environmental Protection Agency (EPA).[19]

Permitting a landfill generally takes between five and seven years, costs millions of dollars and requires rigorous siting, engineering and environmental studies and demonstrations to ensure local environmental and safety concerns are satisfied.[20]

Types

[edit]

Microbial topics

[edit]

The status of a landfill's microbial community may determine its digestive efficiency.[23]

Bacteria that digest plastic have been found in landfills.[24]

Reclaiming materials

[edit]

One can treat landfills as a viable and abundant source of materials and energy. In the developing world, waste pickers often scavenge for still-usable materials. In commercial contexts, companies have also discovered landfill sites, and many[quantify] have begun harvesting materials and energy.[25] Well-known examples include gas-recovery facilities.[26] Other commercial facilities include waste incinerators which have built-in material recovery. This material recovery is possible through the use of filters (electro filter, active-carbon and potassium filter, quench, HCl-washer, SO2-washer, bottom ash-grating, etc.).

Alternatives

[edit]

In addition to waste reduction and recycling strategies, there are various alternatives to landfills, including waste-to-energy incineration, anaerobic digestion, composting, mechanical biological treatment, pyrolysis and plasma arc gasification. Depending on local economics and incentives, these can be made more financially attractive than landfills.

The goal of the zero waste concept is to minimize landfill volume.[27]

Restrictions

[edit]

Countries including Germany, Austria, Sweden,[28] Denmark, Belgium, the Netherlands, and Switzerland, have banned the disposal of untreated waste in landfills.[citation needed] In these countries, only certain hazardous wastes, fly ashes from incineration or the stabilized output of mechanical biological treatment plants may still be deposited.[citation needed]

See also

[edit]

Notes

[edit]
  1. ^ Also known as a tip, dump, rubbish tip, rubbish dump, garbage dump, trash dump, or dumping ground.

References

[edit]
  1. ^ "Waste Management. Background information. General objectives of waste policy" (PDF). www.sustainabledevelopment.un.org. Retrieved May 10, 2024.
  2. ^ a b "How a Landfill Operates". www.co.cumberland.nc.us. Retrieved February 22, 2020.
  3. ^ "Alternative Daily Cover (ADC)". Archived from the original on June 5, 2012. Retrieved September 14, 2012.
  4. ^ a b Letcher, T.M.; Vallero, D.A., eds. (2019). Municipal Landfill, D. Vallero and G. Blight, pp. 235–249 in Waste: A Handbook for Management. Amsterdam, Netherlands and Boston MA, Print Book: Elsevier Academic Press. ISBN 9780128150603. 804 pages.
  5. ^ U.S. Environmental Protection Agency (2007) Landfill bioreactor performance: second interim report: outer loop recycling & disposal facility - Louisville, Kentucky, EPA/600/R-07/060
  6. ^ Weitz, Keith; Barlaz, Morton; Ranjithan, Ranji; Brill, Downey; Thorneloe, Susan; Ham, Robert (July 1999). "Life Cycle Management of Municipal Solid Waste". The International Journal of Life Cycle Assessment. 4 (4): 195–201. Bibcode:1999IJLCA...4..195W. doi:10.1007/BF02979496. ISSN 0948-3349. S2CID 108698198.
  7. ^ US EPA, "Solid Waste Disposal Facility Criteria; Proposed Rule", Federal Register 53(168):33314–33422, 40 CFR Parts 257 and 258, US EPA, Washington, D.C., August 30 (1988a).
  8. ^ a b Themelis, Nickolas J., and Priscilla A. Ulloa. "Methane generation in landfills." Renewable Energy 32.7 (2007), 1243–1257
  9. ^ "CO2 101: Why is carbon dioxide bad?". Mother Nature Network. Retrieved November 30, 2016.
  10. ^ "How does landfill and litter affect our wildlife?". MY ZERO WASTE. January 30, 2009. Retrieved February 22, 2020.
  11. ^ "Landfills are Ruining Lives". www.cdenviro.com. Retrieved February 22, 2020.
  12. ^ Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B. (September 21, 2015). "Estimates of solid waste disposal rates and reduction targets for landfill gas emissions". Nature Climate Change. 6 (2): 162–165. doi:10.1038/nclimate2804.
  13. ^ "U.S. Landfills Are Getting a Second Life as Solar Farms". TIME. June 2, 2022.
  14. ^ "Ministry of the Environment, Conservation and Parks | ontario.ca". www.ontario.ca.
  15. ^ "Aging Landfills: Ontario's Forgotten Polluterswork=Eco Issues". September 28, 2010. Archived from the original on September 28, 2010.
  16. ^ "CEWEP - The Confederation of European Waste-to-Energy Plants".
  17. ^ a b "Fighting Mountains Of Garbage: Here Is How Indian Cities Dealt With Landfill Crisis In 2018 | Swachh Year Ender". NDTV. December 31, 2018. Retrieved February 21, 2020.
  18. ^ Cassella, Carly (June 5, 2019). "India's 'Mount Everest' of Trash Is Growing So Fast, It Needs Aircraft Warning Lights". ScienceAlert. Retrieved February 21, 2020.
  19. ^ Horinko, Marianne, Cathryn Courtin. "Waste Management: A Half Century of Progress." EPA Alumni Association. March 2016.
  20. ^ "Modern landfills". Archived from the original on February 22, 2015. Retrieved February 21, 2015.
  21. ^ EPA, OSWER, ORCR, US (March 24, 2016). "Basic Information about Landfills". www.epa.gov. Retrieved March 14, 2017.cite web: CS1 maint: multiple names: authors list (link)
  22. ^ "Disposal and Storage of Polychlorinated Biphenyl (PCB) Waste". United States Environmental Protection Agency. August 19, 2015. Retrieved May 10, 2017.
  23. ^ Gomez, A.M.; Yannarell, A.C.; Sims, G.K.; Cadavid-Resterpoa, G.; Herrera, C.X.M. (2011). "Characterization of bacterial diversity at different depths in the Moravia Hill Landfill site at Medellín, Colombia". Soil Biology and Biochemistry. 43 (6): 1275–1284. Bibcode:2011SBiBi..43.1275G. doi:10.1016/j.soilbio.2011.02.018.
  24. ^ Gwyneth Dickey Zaikab (March 2011). "Marine microbes digest plastic". Nature. doi:10.1038/news.2011.191.
  25. ^ "Sinologie Spectrum". www.chinalize.nl. Archived from the original on December 8, 2009.
  26. ^ "Commercial exploitation of gas from landfills". Archived from the original on October 24, 2011. Retrieved November 28, 2009.
  27. ^ Qi, Shiyue; Chen, Ying; Wang, Xuexue; Yang, Yang; Teng, Jingjie; Wang, Yongming (March 2024). "Exploration and practice of "zero-waste city" in China". Circular Economy. 3 (1). doi:10.1016/j.cec.2024.100079.
  28. ^ "Regeringskansliets rättsdatabaser". rkrattsbaser.gov.se (in Swedish). Retrieved May 9, 2019.

Further reading

[edit]
[edit]

 

Photo
Photo
Photo
Photo
Photo

Driving Directions in New Hanover County


Driving Directions From Zaxbys Chicken Fingers & Buffalo Wings to The Dumpo Junk Removal & Hauling
Driving Directions From Cape Fear Seafood Company to The Dumpo Junk Removal & Hauling
Driving Directions From Red Robin Gourmet Burgers and Brews to The Dumpo Junk Removal & Hauling
Driving Directions From Smithfield's Chicken 'N Bar-B-Q to The Dumpo Junk Removal & Hauling
Driving Directions From Cape Fear Museum of History and Science to The Dumpo Junk Removal & Hauling
Driving Directions From Jungle Rapids Family Fun Park to The Dumpo Junk Removal & Hauling
Driving Directions From Masonboro Island Reserve to The Dumpo Junk Removal & Hauling
Driving Directions From Wilmington Railroad Museum to The Dumpo Junk Removal & Hauling

Reviews for


Greg Wallace

(5)

I highly recommend Dumpo Junk Removal. Very professional with great pricing and quality work.

Jennifer Davidson

(5)

Great work! Bryce and Adrian are great!

Kelly Vaughn

(5)

Great service with professionalism. You can't ask for more than that!

Kirk Schmidt

(5)

They are great with junk removal. Highly recommend them

Howard Asberry

(5)

The manager was very helpful, knowledgeable and forthright. He definitely knew what he was talking about and explained everything to me and was very helpful. I'm looking forward to working with him

View GBP